基于R进行相关性分析 一、相关性矩阵计算: [1] 加载数据: >data = read.csv("231-6057_2016-04-05-ZX_WD_2.csv",header=FA ...
基于R进行相关性分析 一、相关性矩阵计算: [1] 加载数据: >data = read.csv("231-6057_2016-04-05-ZX_WD_2.csv",header=FA ...
算法原理 KMeans算法是典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最 ...
线性回归与梯度下降算法 作者:上品物语 转载自:线性回归与梯度下降算法讲解 知识点: 线性回归概念 梯度下降算法 l 批量梯度下降算法 l ...
机器:windows 10 64位。 因Spark支持java、python等语言,所以尝试安装了两种语言环境下的spark开发环境。 1、Java下Spark开发环境搭建 1.1、jdk安装 ...
MNIST是一个非常有名的手写体数字识别数据集,在很多资料中,这个数据集都会被用作深度学习的入门样例。而TensorFlow的封装让使用MNIST数据集变得更加方便。MNIST数据集是NIST数据集的 ...
1. 问题 真实的训练数据总是存在各种各样的问题: 1、 比如拿到一个汽车的样本,里面既有以“千米/每小时”度量的最大速度特征,也有“英里/小时”的最大速度特征,显然这两个特征有一个多余 ...
算法原理 由于传统的KMeans算法的聚类结果易受到初始聚类中心点选择的影响,因此在传统的KMeans算法的基础上进行算法改进,对初始中心点选取比较严格,各中心点的距离较远,这就避免了初始聚类中 ...
神经网络解决多分类问题最常用的方法是设置n个输出节点,其中n为类别的个数。对于每一个样例,神经网络可以得到一个n维数组作为输出结果。数组中的每一个维度(也就是每一个输出节点)对应一个类别,通过前向传播 ...
1、函数原型及参数说明 参数说明: n_components: 意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n 类型:int ...
在使用机器学习模型对数据进行训练的时候,需要考虑数据量和数据维度,在很多情况下并不是需要大量的数据和大量的数据维度,这样会造成机器学习模型运行慢,且消耗硬件设备。除此之外,在数据维度较大的情况下, ...