朴素贝叶斯算法(Naive Bayes) 阅读目录 一、病人分类的例子 二、朴素贝叶斯分类器的公式 三、账号分类的例子 四、性别分类的例子 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文 ...
本文为原创文章,转载请注明出处:http: www.cnblogs.com ycwang p .html 认知计算,还要从贝叶斯滤波的基本思想讲起。这一部分,我们先回顾贝叶斯公式的数学基础,然后再来介绍贝叶斯滤波器。 一 . 概率基础回顾 我们先来回顾一下概率论里的基本知识: . X : 表示一个随机变量,如果它有有限个可能的取值 x , x , cdots, x n . . p X x i :表 ...
2016-10-26 08:41 10 18094 推荐指数:
朴素贝叶斯算法(Naive Bayes) 阅读目录 一、病人分类的例子 二、朴素贝叶斯分类器的公式 三、账号分类的例子 四、性别分类的例子 生活中很多场合需要用到分类,比如新闻分类、病人分类等等。 本文 ...
1. 前言 说到朴素贝叶斯算法,首先牵扯到的一个概念是判别式和生成式。 判别式:就是直接学习出特征输出\(Y\)和特征\(X\)之间的关系,如决策函数\(Y=f(X)\),或者从概率论的角度,求出条件分布\(P(Y|X)\)。代表算法有决策树、KNN、逻辑回归、支持向量机、随机条件场 ...
一、 “探测仪,如果我问一个贝叶斯学派的统计学家如果……”“[掷]我是一个中微子探测仪,不是迷宫守卫。老实说,你是不是脑子坏掉了。”“[掷]...yes” 迷宫守卫的梗:说迷宫里有2条路,分别通向目的地和陷阱,路口各有一个守卫,一个只说真话一个只说假话,他们都知道路后面是什么以及彼此说话 ...
2.4.1 贝叶斯滤波算法 最通用的算法对于计算信任度有贝叶斯滤波算法给出。这个算法计算信任度分布bel从观测和控制数据中得出。我们首先陈述基本的算法,然后用数字例子来阐明。再之后,我们到目前为止所做的假设来推导它。 贝叶斯滤波的第二步称为测量更新,在第四行,贝叶斯滤波算法用信任度 ...
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果。 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新 ...
粒子滤波确实是一个挺复杂的东西,从接触粒子滤波到现在半个多月,博主哦勒哇看了N多篇文章,查略了嗨多资料,很多内容都是看了又看,细细斟酌。今日,便在这里验证一下自己的修炼成果,请各位英雄好汉多多指教。 讲粒子滤波之前,还得先讲一个叫”贝叶斯滤波”的东西,因为粒子滤波是建立在贝叶斯滤波 ...
1. 说明 本文是来自忠厚老实的老王在B站讲的卡尔曼滤波,经过自己理解写的总结笔记,课讲的非常好,一定要去听 2. 贝叶斯公式和应用 对于事件A和B,设其同时发生的概率为\(P(A =a \bigcap B =b)\), 则存在: \[P(A =a \bigcap B = b)=P ...
给定t时刻以及之前的所有观测z和输入u,我们的目标是求得当前状态量x的概率分布(belief),即 \[bel(x_t)=p(x_t|z_{1:t}, u_{1:t}) \] 在实际使用中 ...