因为毕设需要,我首先是用ffmpeg抽取某个宠物视频的关键帧,然后用caffe对这个关键帧中的物体进行分类。 1.抽取关键帧的命令: 2.用python编写脚本,利用在imagenet上训练的模型分类视频帧中的物体。 抽取得到的视频关键帧都存放在文件夹"/home ...
对于训练好的Caffe 网络 输入:彩色or灰度图片 做minist 下手写识别分类,不能直接使用,需去除均值图像,同时将输入图像像素归一化到 直接即可。 include lt caffe caffe.hpp gt include lt opencv core core.hpp gt include lt opencv highgui highgui.hpp gt include lt open ...
2016-09-06 09:31 0 3735 推荐指数:
因为毕设需要,我首先是用ffmpeg抽取某个宠物视频的关键帧,然后用caffe对这个关键帧中的物体进行分类。 1.抽取关键帧的命令: 2.用python编写脚本,利用在imagenet上训练的模型分类视频帧中的物体。 抽取得到的视频关键帧都存放在文件夹"/home ...
谷歌在大型图像数据库ImageNet上训练好了一个Inception-v3模型,这个模型我们可以直接用来进来图像分类。 下载地址:https://storage.googleapis.com/download.tensorflow.org/models ...
前言:最近参加百度点石大赛,完成商家招牌的分类和检测,把实验过程简单记录下来,具体步骤如下。 环境配置:windows下的visual studio2013和caffe(cpu版本)环境搭建请看我另一篇博客:http://www.cnblogs.com/wmr95/articles ...
caffe程序自带有一张小猫图片,存放路径为caffe根目录下的 examples/images/cat.jpg, 如果我们想用一个训练好的caffemodel来对这张图片进行分类,那该怎么办呢? 如果不用这张小猫图片,换一张别的图片,又该怎么办呢?如果学会了小猫图片的分类,那么换成其它图片,程序 ...
图像分类train.py代码总结 前两天,熟悉了图像分类的训练代码,发现,不同网络,只是在网络结构上不同。而训练部分的代码,都是由设备选择、数据转换,路径确定、数据导入、JSON文件生成、损失函数选择、优化器选择、模型带入和训练集数据和测试集数据训练固定几部分组成的。 其中的模型 ...
1、caffemodel文件 文件名称为:bvlc_reference_caffenet.caffemodel,文件大小为230M左右,为了代码的统一,将这个caffemodel文件下载到caffe根目录下的 models/bvlc_reference_caffenet/ 文件夹下面。可以运行 ...
三:使用Caffe训练Caffemodel并进行图像分类 上一篇记录的是如何使用别人训练好的MNIST数据做训练测试。上手操作一边后大致了解了配置文件属性。这一篇记录如何使用自己准备的图片素材做图像分类。第一篇《实践详细篇-Windows下使用VS2015编译安装Caffe环境(CPU ONLY ...
算法描述: 神经网络图像分类算法首先通过PCA技术提取样本图像特征码与待分类图像特征码,然后将特征码送入神经网络进行训练,让神经网络学习每个类别图像的特征最后将未知类别图像送入神经网络,自动识别它的类型。步骤如下: 基于PCA技术提取每个样本的图像特征码。 根据样本特征码生成输入 ...