这是个06年的老文章了,但是很多地方还是值得看一看的. 一、概要 主要讲了CNN的Feedforward Pass和 Backpropagation Pass,关键是卷积层和polling层 ...
一 概述 Nvidia提出的一种基于 DCNN的动态手势识别的方法,主要亮点是提出了一个novel的data augmentation的方法,以及LRN和HRn两个CNN网络结合的方式。 D的CNN主要是使用了三维的卷积核去处理视频序列,是视频分析中常用的方法之一。 这里是可以识别手语这种动态连续的手势的。 二 亮点 首先..竟然没有state of art... 预处理:因为输入是连续的视频序列 ...
2016-08-25 17:33 1 2955 推荐指数:
这是个06年的老文章了,但是很多地方还是值得看一看的. 一、概要 主要讲了CNN的Feedforward Pass和 Backpropagation Pass,关键是卷积层和polling层 ...
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3 ...
动机(Motivation) 在自动语音识别(Automated Speech Recognition, ASR)中,只是把语音内容转成文字,但是人们对话过程中除了文本还有其它重要的信息,比如语调,情感,响度。这些信息对于语音的理解也是很重要的。本文关注其中一个点,如何识别出语音的情感,即语音 ...
Learning Convolutional Neural Networks for Graphs 2018-01-17 21:41:57 【Introduction】 这篇 paper 是发表在 ICML 2016 的:http://jmlr.org/proceedings ...
目录 摘要 一、前言 1.1直接获取3D数据的传感器 1.2为什么用3D数据 1.3目前遇到的困难 1.4现有的解决方法及存在的问题 二、本文idea 2.1 idea来源 2.2 初始思路 ...
简介: 这是一片发表在TPAMI上的文章,可以看见作者有余凯(是百度的那个余凯吗?) 本文提出了一种3D神经网络:通过在神经网络的输入中增加时间这个维度(连续帧),赋予神经网络行为识别的功能。 相应提出了一种3D卷积,对三幅连续帧用一个3D卷积核进行卷积(可以理解为用三个 ...
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28 15:45:13 研究背景和动机: 行人动作识别(Human Action ...
2014 ICLR 纽约大学 LeCun团队 Pierre Sermanet, David Eigen, Xiang Zhang, Michael Mathieu, Rob Fergus, Yann ...