本节课继续讲授word2vec模型的算法细节,并介绍了一种新的基于共现矩阵的词向量模型——GloVe模型。最后,本节课重点介绍了word2vec模型评估的两种方式。 Skip-gram模型 上节课 ...
Stanford大学在 年开设了一门Deep Learning for Natural Language Processing的课程,广受好评。并在 年春季再次开课。我将开始这门课程的学习,并做好每节课的课程笔记放在博客上。争取做到每周一更吧。 本文是第一篇。 NLP简介 NLP,全名Natural Language Processing 自然语言处理 ,是一门集计算机科学,人工智能,语言学三者于 ...
2016-07-30 18:01 1 8738 推荐指数:
本节课继续讲授word2vec模型的算法细节,并介绍了一种新的基于共现矩阵的词向量模型——GloVe模型。最后,本节课重点介绍了word2vec模型评估的两种方式。 Skip-gram模型 上节课 ...
本节课将开始学习Deep NLP的基础——词向量模型。 背景 word vector是一种在计算机中表达word meaning的方式。在Webster词典中,关于meaning有三种定义: the idea that is represented by a word, phrase ...
斯坦福课程CS224d: Deep Learning for Natural Language Processing lecture13:Convolutional neural networks -- for sentence classification 主要是学习笔记,卷积神经网络 ...
Stanford NLP课程简介 1. NLP应用例子 问答系统: IBM Watson 信息提取(information extraction) 情感分析 机器翻译 2. NLP应用当前进展 很成熟:垃圾邮件检测,词性标注(POS),实体名称识别(Named ...
神经网络基础 Deep learning就是深层神经网络 神经网络的结构如下, 这是两层神经网络,输入层一般不算在内,分别是hidden layer和output layer hidden layer中的一个神经元的结构如下, 可以看出这里的神经元结构等同于一个逻辑回归单元 ...
https://www.zybuluo.com/hanxiaoyang/note/404582 Lecture 1:自然语言入门与次嵌入 1.1 Intro to NLP and Deep Learning 1.2 Simple Word Vector representations ...
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化。 NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量。这个向量的维度是词表大小,其中绝大多数元素 ...