对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。 1. 获取数据,定义问题 没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归 ...
import pandas as pd from sklearn.cross validation import train test split from sklearn.linear model import LinearRegression 数据 tem , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ...
2016-03-04 15:55 0 1651 推荐指数:
对于想深入了解线性回归的童鞋,这里给出一个完整的例子,详细学完这个例子,对用scikit-learn来运行线性回归,评估模型不会有什么问题了。 1. 获取数据,定义问题 没有数据,当然没法研究机器学习啦。:) 这里我们用UCI大学公开的机器学习数据来跑线性回归 ...
本文将用一个例子来讲述怎么用scikit-learn和pandas来学习Ridge回归。 1. Ridge回归的损失函数 在我的另外一遍讲线性回归的文章中,对Ridge回归做了一些介绍,以及什么时候适合用 Ridge回归。如果对什么是Ridge回归还完全不清楚的建议阅读我这篇 ...
scikit-learn对于线性回归提供了比较多的类库,这些类库都可以用来做线性回归分析,本文就对这些类库的使用做一个总结,重点讲述这些线性回归算法库的不同和各自的使用场景。 线性回归的目的是要得到输出向量\(\mathbf{Y}\)和输入特征\(\mathbf{X}\)之间 ...
这是机器学习系列的第一篇文章。 本文将使用Python及scikit-learn的线性回归预测Google的股票走势。请千万别期望这个示例能够让你成为股票高手。下面按逐步介绍如何进行实践。 准备数据 本文使用的数据来自www.quandl.com网站。使用Python相应的quandl库 ...
一、岭回归模型 岭回归其实就是在普通最小二乘法回归(ordinary least squares regression)的基础上,加入了正则化参数λ。 二、如何调用 alpha:就是上述正则化参数λ;fit_intercept:默认 ...
1. Dataset scikit-learn提供了一些标准数据集(datasets),比如用于分类学习的iris 和 digits 数据集,还有用于归约的boston house prices 数据集。 其使用方式非常简单如下所示 ...
scikit-learn点滴 scikit-learn是非常漂亮的一个机器学习库,在某些时候,使用这些库能够大量的节省你的时间,至少,我们用Python,应该是很难写出速度快如斯的代码的. scikit-learn官方出了一些文档,但是个人觉得,它的文档很多东西都没有讲清楚,它说算法原理 ...