基于scikit-learn的简单逻辑回归(Logistic regression)练习


#用逻辑回归解决该问题
from sklearn.linear_model import LogisticRegression as LR
from sklearn.linear_model import RandomizedLogisticRegression as RLR
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split

X = train_data
Y = target

#无需进行分组,数据自行划分为测试集和训练集
# X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.3, random_state=0)

#归一化
sc=StandardScaler().fit(X_train)
X_train_std = sc.transform(X_train)
X_test_std = sc.transform(X_test)

lr = LR()
lr.fit(X_train,Y_train)

pred_test = lr.predict_proba(X_test)
acc=lr.score(X_test,Y_test)

# result.to_csv('submission_result')


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM