一、什么是线性代数 线性与非线性: 非线性问题则可以在一定基础上转化为线性问题求解 线性空间: 对所谓的要满足"加法"和"数乘"等八条公理的元素的集合 线性函数: 几何意义:过原点的直线、平面、超平面 代数意义:可加性、比例性 可加性(线性的可加性既是没有互相激励的累加,也是 ...
二 向量的基本几何意义 自由向量: 大小和方向 物理:矢量 向量的数学表示: 把空间中所有的向量的尾部都拉到坐标原点,这样N维点空间可以与N维向量空间建立一一对应关系:N维点空间中点 , , 取作原点,那么每一个点都可以让一个向量和它对应,这个向量就是从坐标原点出发到这个点为止的向量。 向量加法的几何意义: 平行四边形法则 三角形法则 向量加法的物理意义: 船过河问题:船头的位移 马达动力 流水影 ...
2013-12-25 22:04 0 41096 推荐指数:
一、什么是线性代数 线性与非线性: 非线性问题则可以在一定基础上转化为线性问题求解 线性空间: 对所谓的要满足"加法"和"数乘"等八条公理的元素的集合 线性函数: 几何意义:过原点的直线、平面、超平面 代数意义:可加性、比例性 可加性(线性的可加性既是没有互相激励的累加,也是 ...
三、行列式的几何意义: 行列式的定义: 行列式是由一些数据排列成的方阵经过规定的计算方法而得到的一个数。当然,如果行列式中含有未知数,那么行列式就是一个多项式。它本质上代表一个数值,这点请与矩阵区别开来。矩阵只是一个数表,行列式还要对这个数表按照规则进一步计算,最终得到一个实数、复数 ...
考察$\boldsymbol u\cdot\boldsymbol y$的几何意义。 把向量$\boldsymbol y$拆成两个分量:$\boldsymbol y=\boldsymbol{\hat y}+\boldsymbol z$。其中$\boldsymbol{\hat y}=\alpha ...
前言 随便写点东西 理解 向量:具有大小与方向的量,在几何中通常用带有箭头的线段表示,代数中通常用上方写有箭头的字母表示\((\vec u)\) 向量相加采取平行四边形法则,意义:沿着\(\vec u\)走后再沿着\(\vec w\)走的终点 推广到一般:$$\begin{aligned ...
什么是向量积? 向量积,也称(向量)叉积,(向量)叉乘,外积,是一种在向量空间中对向量进行的二元运算。常见于物理学力学、电磁学、光学和计算机图形学等理工学科中,是一种很重要的概念。 设向量 \(\overrightarrow{c}\) 由两个向量 \(\overrightarrow ...
作者:魏通 链接:https://www.zhihu.com/question/20473040/answer/102907063 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 以下分别列举常用的向量范数和矩阵范数的定义 ...
1. 向量表示 向量指具有大小和方向的量,也称为矢量。可以从几何和坐标两个角度来表示。 1)几何表示 向量可以用有向线段来表示。有向线段的长度表示向量的大小,也就是向量的长度。箭头所指的方向表示向量的方向。 长度为 0 的向量叫做零向量。长度等于 ...
向量是线性代数最基础、最基本的概念之一,要深入理解线性代数的本质,首先就要搞清楚向量到底是什么? 向量之所以让人迷糊,是因为我们在物理、数学,以及计算机等许多地方都见过它,但又没有彻底弄懂,以至于似是而非。 1. 物理学中的向量 物理学中的向量:空间中的箭头,由长度和它所指的方向决定 ...