前言
随便写点东西
理解
向量:具有大小与方向的量,在几何中通常用带有箭头的线段表示,代数中通常用上方写有箭头的字母表示\((\vec u)\)
向量相加采取平行四边形法则,意义:沿着\(\vec u\)走后再沿着\(\vec w\)走的终点
推广到一般:$$\begin{aligned}\vec u = \begin{bmatrix}\begin{array}{ccc}x_1 \y_1 \\end{array}\end{bmatrix}\vec w = \begin{bmatrix}\begin{array}{ccc}x_2 \y_2 \\end{array}\end{bmatrix}\
\vec u + \vec w = \vec v = \begin{bmatrix}\begin{array}{ccc}x_1 + x_2 \y_1 + y_2\\end{array}\end{bmatrix}\end{aligned}$$
减法
向量叉积
\(a(x_1,y_1),b(x_2,y_2)\Longrightarrow x_1y_2-x_2y_1\)我们通过平移+割补的方法可以证明出这恰好是平行四边形面积