转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上 ...
决策与概率估计 假设一个很简单的实验来看我们做决策的过程,有一个有偏的硬币,投了 次, 次出现人头, 次出现字,下一次抛硬币,如果我们猜对我们得 元,猜错我们交出 元。很直觉的,我们每次都会猜人头的啦。细细一想,我们在做这样一件事,max , 就是在估计了概率的情况下,我们看两个决策 人头 字 哪个带来的收益大。 换一个想法,我们不先估计出经验分布P Y X ,而是直接看有没有可能做出一个决策, ...
2012-07-03 17:32 0 7353 推荐指数:
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差部分(loss term) + 正则化部分 ...
http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数可以看做 误差 ...
线性回归中提到最小二乘损失函数及其相关知识。对于这一部分知识不清楚的同学可以参考上一篇文章《线性回归、梯度下降》。本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法。 最小二 ...
通常而言,损失函数由损失项(loss term)和正则项(regularization term)组成。发现一份不错的介绍资料: http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures ...
原文: http://www.voidcn.com/article/p-rtzqgqkz-bpg.html 最近看了下 PyTorch 的损失函数文档,整理 ...
function,也就是你用一个函数E,来表示样本总体的误差。 而有时候还会出现loss funct ...
上周分享会,小伙伴提到了“极大似然估计”,发现隔了一年多,竟然对这些基本的机器学习知识毫无准确的概念了。 先验分布:根据一般的经验认为随机变量应该满足的分布,eg:根据往年的气候经验(经验),推测下雨(结果)的概率即为先验概率;后验分布:通过当前训练数据修正的随机变量的分布,比先验分布 ...