等差数列和等比数列
1、求解任意一项的值(通项公式)
等差数列:
首项:\(a_1\)
, 公差: \(d\)
\[a_n = a_1 + d (n - 1) \]
等比数列:
首项:\(a_1\)
, 公比: \(q\)
\[\frac{a_n}{a_{n-1}} = q (n\geq2,a_{n-1}\neq0,q\neq0) \]
\[\Downarrow \]
\[a_n = a_1 \Huge. \normalsize q^{n-1} \]
2、推论
等差数列:
和:sum
, 项数:len
, 首项:a_1
, 末项:a_n
, 公差: \(d\)
-
\[sum = \frac{len}{2}(a_1 + a_n) \]
-
\[len = \frac{1}{d}(a_n - a_1) + 1 \]
-
\[a_1 = \frac{2sum}{len}-a_n-d(len-1) \]
-
\[a_n = \frac{2sum}{len} - a_1 \]
-
\[a_n = a_1 + d(len - 1) \]
-
\[sum_i = i(sum_{i-1} - sum_{i-2}) (i \geq3) \]
等比数列
\[sum = \frac{a-a_nq}{1-q} \]