0,,九点标定法的具体实现方法参见,https://cloud.tencent.com/developer/article/1835302,本文只接受取到数据后的处理方法
1,我是将两个数据存放在两个txt文件内,CameraPos.txt存放是的相机坐标,RobotPos存在的是对应的机器人坐标
2,定义一个结构体存储标定后结果,定义两个vector<cv::Point2f>存储读取到的点坐标
public : struct CalResult { double A_x; double B_x; double C_x; double A_y; double B_y; double C_y; }myCalResult; public: vector<cv::Point2f> points_camera; vector<cv::Point2f> points_robot;
3,读取两个txt里的值,分别保存到两个vector
char path[256]; GetModuleFileNameA(NULL, path, 256); string filePath = path; filePath=filePath.substr(0, filePath.rfind('\\')); filePath = filePath + "\\"+ "CalData" + "\\" + "CameraPos.txt"; ifstream cameraFile; cameraFile.open(filePath); assert(cameraFile.is_open()); cv::Point2d temp; while (cameraFile.good() && !cameraFile.eof()) { cameraFile >> temp.x >> temp.y; points_camera.push_back(temp); } filePath = filePath.substr(0, filePath.rfind('\\')); filePath = filePath + "\\" + "RobotPos.txt"; ifstream robotFile; robotFile.open(filePath); assert(robotFile.is_open()); while (robotFile.good() && !robotFile.eof()) { robotFile >> temp.x >> temp.y; points_robot.push_back(temp); }
4,实现计算的函数
void getCalResult(vector<cv::Point2f> points_camera, vector<cv::Point2f> points_robot, CalResult a) { if (points_camera.size()!= calPointCount || points_robot.size()!= calPointCount) { ::MessageBox(NULL,TEXT("手眼标定错误"),TEXT("错误"),1); return; } cv::Mat dst = cv::Mat(3, 3, CV_32F, cv::Scalar(0));//初始化系数矩阵A cv::Mat out_x = cv::Mat(3, 1, CV_32F, cv::Scalar(0));//初始化矩阵b cv::Mat out_y = cv::Mat(3, 1, CV_32F, cv::Scalar(0));//初始化矩阵b for (int i = 0; i < points_camera.size(); i++) { //计算3*3的系数矩阵 dst.at<float>(0, 0) = dst.at<float>(0, 0) + pow(points_camera[i].x, 2); dst.at<float>(0, 1) = dst.at<float>(0, 1) + points_camera[i].x*points_camera[i].y; dst.at<float>(0, 2) = dst.at<float>(0, 2) + points_camera[i].x; dst.at<float>(1, 0) = dst.at<float>(1, 0) + points_camera[i].x*points_camera[i].y; dst.at<float>(1, 1) = dst.at<float>(1, 1) + pow(points_camera[i].y, 2); dst.at<float>(1, 2) = dst.at<float>(1, 2) + points_camera[i].y; dst.at<float>(2, 0) = dst.at<float>(2, 0) + points_camera[i].x; dst.at<float>(2, 1) = dst.at<float>(2, 1) + points_camera[i].y; dst.at<float>(2, 2) = points_camera.size(); //x计算3*1的结果矩阵 out_x.at<float>(0, 0) = out_x.at<float>(0, 0) + points_camera[i].x*points_robot[i].x; out_x.at<float>(1, 0) = out_x.at<float>(1, 0) + points_camera[i].y*points_robot[i].x; out_x.at<float>(2, 0) = out_x.at<float>(2, 0) + points_robot[i].x; //y计算3*1的结果矩阵 out_y.at<float>(0, 0) = out_y.at<float>(0, 0) + points_camera[i].x*points_robot[i].y; out_y.at<float>(1, 0) = out_y.at<float>(1, 0) + points_camera[i].y*points_robot[i].y; out_y.at<float>(2, 0) = out_y.at<float>(2, 0) + points_robot[i].y; } //判断矩阵是否奇异 double determ = determinant(dst); if (abs(determ) < 0.001) { ::MessageBox(NULL, TEXT("X标定求解奇异"), TEXT("错误"), 1); return; } cv::Mat inv; cv::invert(dst, inv);//求矩阵的逆 cv::Mat output = inv * out_x;//计算输出 //X坐标计算结果,robotX=A_x*Camera_X+B_x*Camera_Y+C_x a.A_x = output.at<float>(0, 0); a.B_x = output.at<float>(1, 0); a.C_x = output.at<float>(2, 0); output = inv * out_y;//计算输出 //Y坐标计算结果,robotY=A_y*Camera_X+B_y*Camera_Y+C_y a.A_y = output.at<float>(0, 0); a.B_y = output.at<float>(1, 0); a.C_y = output.at<float>(2, 0); }
6 计算结果验证 https://zhuanlan.zhihu.com/p/391938754
7 算法参考:https://blog.csdn.net/AlonewaitingNew/article/details/95217730