05AXI4总线axi-stream(AXI4总线实战)


软件版本:vitis2020.2(vivado2020.2)

操作系统:WIN10 64bit

硬件平台:适用XILINX A7/K7/Z7/ZU/KU系列FPGA(米联客(milianke)MZU07A-EG硬件开发平台)

登录"米联客"FPGA社区-www.uisrc.com视频课程、答疑解惑!

5.1概述

    AXI4-Stream去掉了地址,允许无限制的数据突发传输规模,AXI4-Stream接口在数据流传输中应用非常方便,本来首先介绍了AXI4-Stream协议的型号定义,并且给出了一些Stream接口的时序方案图。之后通过VIVADO自带的AXI4模板,创建axi-stream-master和axi-stream-slave ip。通过图形设计连线,添加仿真激励完成验证。

本文实验目的:

1:掌握基于VIVADO工具产生AXI协议模板

2:掌握通过VIVADO工具产生AXI-Stream代码

3:掌握通过VIVADO封装AXI-Stream图形化IP

4:通过仿真验证AXI-Stream IP的工作是否正常。

5.2AXI4-Stream协议介绍

5.2.1信号定义

信号

描述

ACLK

时钟源

信号在ACLK信号上升沿采样

ARESETn

复位源

复位信号,ARESETn低电平有效

TVALID

master

TVALID代表主设备数据有效,当TVALIDTREADY同时有效完成数据收发

TREADY

slave

TREADY表示从设备准备可以,主设备可以发送数据,当TVALIDTREADY同时有效完成数据收发

TDATA[(8n-1):0]

master

TDATA axi-stream的数据

TSTRB[(n-1)0]

master

TSTRB[n-1:0]对应的bit位为1代表对应的字节有效,否则无效,但是会占用这个数据位。

TKEEP[(n-1)0]

master

KEEP[n-1:0]对应的bit位为1代表对应的字节有效,否则为空,可以丢掉。

TLAST

master

TLAST代表最后一个数据。

TID[(i-1):0]

master

TID是数据流的标识符,用来表明不同的数据流。

TDEST[(d-1):0]

master

TDEST为据流提供路由信息。

TUSER[(n-1):0]

master

TUSER一般用于数据的同步,代表stream数据的开始。

以上所有信号,在axi-stream传输中,不一定全部用到,具体根据应用场景的情况而定。

5.2.1axi-stream方案展示

下图中除了ACLK外,axi-stream的信号用到了,TVALID、TREADY、TLAST、TDATA。其中TDATA虽然是12bit但是实际上会占用16bit的物理总线。并且数据是循环发送,用TLAST标识了一次循环的最后一个数据。

下图中截图来自AXI-DMA mm2s接口的时序图,除了ACLK外,axi-stream的信号用到了,TVALID、TREADY、TLAST、TDATA、TKEEP。用TLAST标识了一次循环的最后一个数据。

下图中是来自于xilinx vivado自带的axis_vid_out ip的视频输出时序。EOL就是tlast ,SOF就是tuser初次外还包括了VALID、READY、DATA信号。

5.3创建axi-stream-slave总线接口IP

新建fpga工程,过程省略

5.4创建axi-stream-master总线接口IP

未来完成axi-steam协议的验证,采用以上方法,我们再创建一个saxis的IP

创建完成后如下图所示

5.5创建FPGA图像化设计

设置IP路径

 

添加已经创建好的IP

输入关键词axis,在最后可以看到,双击添加Ip

完成连线

maxis的ip参数设置

saxis的ip参数设置

自动创建顶层文件

5.6创建仿真文件

 

仿真程序非常简单,只要提供时钟和复位信号

`timescale 1ns / 1ns

/*

Company : Liyang Milian Electronic Technology Co., Ltd.

Brand: 米联客(milianke)

Technical forum:uisrc.com

taobao1: milianke.taobao.com

taobao2: osrc.taobao.com

jd:milianke.jd.com

Create Date: 2019/12/17

Module Name: axis_top_sim

Description:

Copyright: Copyright (c) msxbo

Revision: 1.0

Signal description:

1) _i input

2) _o output

3) _n activ low

4) _dg debug signal

5) _r delay or register

6) _s state mechine

*/

////////////////////////////////////////////////////////////////////////////////

 

module axis_top_sim();

 

reg m00_axis_aclk_0;

reg m00_axis_aresetn_0;

 

system_wrappertem system_wrapper_inst

(

.m00_axis_aclk_0(m00_axis_aclk_0),

.m00_axis_aresetn_0(m00_axis_aresetn_0)

);

 

initial begin

m00_axis_aclk_0 = 1'b0;

m00_axis_aresetn_0 = 1'b0;

#100;

m00_axis_aresetn_0 = 1'b1;

end

 

always

begin

#5 m00_axis_aclk_0 = ~m00_axis_aclk_0;

end

 

endmodule

 

5.7程序分析

默认的maxis模板才的代码有bug,我们对其进行修改.

1:把以下代码替换默认的代码并且保存

 

`timescale 1 ns / 1 ps

 

    module maxis_v1_0_M00_AXIS #

    (

        // Width of S_AXIS address bus. The slave accepts the read and write addresses of width C_M_AXIS_TDATA_WIDTH.

        parameter integer C_M_AXIS_TDATA_WIDTH    = 32,

        // Start count is the number of clock cycles the master will wait before initiating/issuing any transaction.

        parameter integer C_M_START_COUNT    = 32

    )

    (

        // Global ports

        input wire M_AXIS_ACLK,

        //

        input wire M_AXIS_ARESETN,

        // Master Stream Ports. TVALID indicates that the master is driving a valid transfer, A transfer takes place when both TVALID and TREADY are asserted.

        output wire M_AXIS_TVALID,

        // TDATA is the primary payload that is used to provide the data that is passing across the interface from the master.

        output wire [C_M_AXIS_TDATA_WIDTH-1 : 0] M_AXIS_TDATA,

        // TSTRB is the byte qualifier that indicates whether the content of the associated byte of TDATA is processed as a data byte or a position byte.

        output wire [(C_M_AXIS_TDATA_WIDTH/8)-1 : 0] M_AXIS_TSTRB,

        // TLAST indicates the boundary of a packet.

        output wire M_AXIS_TLAST,

        // TREADY indicates that the slave can accept a transfer in the current cycle.

        input wire M_AXIS_TREADY

    );

    // Total number of output data

    localparam NUMBER_OF_OUTPUT_WORDS = 8;

    

    // function called clogb2 that returns an integer which has the

    // value of the ceiling of the log base 2.

    function integer clogb2 (input integer bit_depth);

     begin

     for(clogb2=0; bit_depth>0; clogb2=clogb2+1)

     bit_depth = bit_depth >> 1;

     end

    endfunction

    

    // WAIT_COUNT_BITS is the width of the wait counter.

    localparam integer WAIT_COUNT_BITS = clogb2(C_M_START_COUNT-1);

    

    // bit_num gives the minimum number of bits needed to address 'depth' size of FIFO.

    localparam bit_num = clogb2(NUMBER_OF_OUTPUT_WORDS);

    

    // Define the states of state machine

    // The control state machine oversees the writing of input streaming data to the FIFO,

    // and outputs the streaming data from the FIFO

    parameter [1:0] IDLE = 2'b00, // This is the initial/idle state

      

     INIT_COUNTER = 2'b01, // This state initializes the counter, once

     // the counter reaches C_M_START_COUNT count,

     // the state machine changes state to SEND_STREAM

     SEND_STREAM = 2'b10; // In this state the

     // stream data is output through M_AXIS_TDATA

    // State variable

    reg [1:0] mst_exec_state;

    // Example design FIFO read pointer

    reg [bit_num-1:0] read_pointer;

 

    // AXI Stream internal signals

    //wait counter. The master waits for the user defined number of clock cycles before initiating a transfer.

    reg [WAIT_COUNT_BITS-1 : 0]     count;

    //streaming data valid

    wire     axis_tvalid;

    //Last of the streaming data

    wire     axis_tlast;

    wire     tx_en;

    //The master has issued all the streaming data stored in FIFO

    wire     tx_done;

 

    // I/O Connections assignments

    assign M_AXIS_TVALID    = axis_tvalid;

    assign M_AXIS_TDATA    = read_pointer;

    assign M_AXIS_TLAST    = axis_tlast;

    assign M_AXIS_TSTRB    = {(C_M_AXIS_TDATA_WIDTH/8){1'b1}};

 

    // Control state machine implementation

    always @(posedge M_AXIS_ACLK)

    begin

     if (!M_AXIS_ARESETN)

     // Synchronous reset (active low)

     begin

     mst_exec_state <= IDLE;

     count <= 0;

     end

     else

     case (mst_exec_state)

     IDLE:

         mst_exec_state <= INIT_COUNTER;

     INIT_COUNTER:

     // The slave starts accepting tdata when

     // there tvalid is asserted to mark the

     // presence of valid streaming data

     if ( count == C_M_START_COUNT - 1 )

     begin

     mst_exec_state <= SEND_STREAM;

     end

     else

     begin

     count <= count + 1;

     mst_exec_state <= INIT_COUNTER;

     end

      

     SEND_STREAM:

     // The example design streaming master functionality starts

     // when the master drives output tdata from the FIFO and the slave

     // has finished storing the S_AXIS_TDATA

     if (tx_done)

     begin

     mst_exec_state <= IDLE;

     end

     else

     begin

     mst_exec_state <= SEND_STREAM;

     end

     endcase

    end

 

    //tvalid generation

    //axis_tvalid is asserted when the control state machine's state is SEND_STREAM and

    //number of output streaming data is less than the NUMBER_OF_OUTPUT_WORDS.

    assign axis_tvalid = ((mst_exec_state == SEND_STREAM) && (read_pointer < NUMBER_OF_OUTPUT_WORDS));

    

    // AXI tlast generation

    assign axis_tlast = (read_pointer == NUMBER_OF_OUTPUT_WORDS - 1'b1)&& tx_en;

 

    assign tx_done = axis_tlast;

 

    //FIFO read enable generation

 

    assign tx_en = M_AXIS_TREADY && axis_tvalid;

 

     // Streaming output data is read from FIFO

     always @( posedge M_AXIS_ACLK )

     begin

     if(!M_AXIS_ARESETN)

     begin

     read_pointer <= 0;

     end

     else if (tx_en)

     begin

     read_pointer <= read_pointer + 32'b1;

     end

     end

 

    endmodule

2:在Tcl Console中输入reset_project对工程IP复位

3:之后单击Refresh IP Catalog

最后单击upgrade Selected完成更新

在看看看saxis的源码,这部分代码非常简单

首先是状态机,当S_AXI_TVALID有效,saxis的状态机进入WRITE_FIFO

只要接收的数据小于(write_pointer <= NUMBER_OF_INPUT_WORDS-1)并且saxis状态机是WRITE_FIFO状态机,表示saxis可以接收数据,设置axis_tready==1

如下:assign axis_tready = ((mst_exec_state == WRITE_FIFO) && (write_pointer <= NUMBER_OF_INPUT_WORDS-1));

write_pointer 用于写入了多少个数据。

写数据到fifo中

5.8实验结果

仿真结果


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM