04AXI4总线axi-full-master(AXI4总线实战)


软件版本:vitis2020.2(vivado2020.2)

操作系统:WIN10 64bit

硬件平台:适用XILINX A7/K7/Z7/ZU/KU系列FPGA(米联客(milianke)MZU07A-EG硬件开发平台)

登录"米联客"FPGA社区-www.uisrc.com视频课程、答疑解惑!

4.1概述

    使用XILINX 的软件工具VIVADO以及XILINX的7代以上的FPGA或者SOC掌握AXI-4总线结束,并且可以灵活使用AXI-4总线技术完成数据的交换,可以让我们在构建强大的FPGA内部总线数据互联通信方面取得高效、高速、标准化的优势。

    关于AXI4总线协议的部分介绍请阅读"01AXI4总线axi-lite-slave"。

本文实验目的:

1:掌握基于VIVADO工具产生AXI协议模板

2:掌握通过VIVADO工具产生AXI-full-master代码

3:理解AXI-full-master中自定义寄存器的地址分配

4:掌握通过VIVADO封装AXI-full-slave图形化IP

5:通过仿真验证AXI-full-master IP的工作是否正常。

4.2创建axi4-full-master总线接口IP

新建fpga工程,过程省略

新建完成工程后,单击菜单栏Tools->Create and Package New IP,开始创建一个AXI4-Full接口总线IP

选择使用vivado自带的AXI总线模板创建一个AXI4-FULL接口IP

 

设置IP的名字为maxi_full

模板支持3中协议,分别是AXI4-Full AXI4-Lite AXI4-Stream,这选择Full;总线包括Master和Slave两种模式,这里选择Master模式

这里选择Verify Peripheral IP using AXI4 VIP 可以对AXI4-Lite快速验证

 

 

单击Finish 后展开VIVADO自动产生的demo,单击Block Design的工程,可以看到如下2个IP。其中maxi_full_0就是我们自定义的IP,另外一个slave_0是用来验证maxi_full_0正确性。

采用默认地址分配即可

继续站看代码看看里面有什么东西

路径uisrc/03_ip/ maxi_full_1.0/hdl路径下的maxi_full_v1_0_M00_AXI.v就是我们的源码。另外一个maxi_full_v1_0.v是软件产生了一个接口文件,如果我们自己定义IP可有可无。

4.3程序分析

axi总线信号的关键无非是地址和数据,而写地址的有效取决于AXI_AWVALID和AXI_AWREADY,写数据的有效取决于S_AXI_WVALID和S_AXI_WREADY。同理,读地址的有效取决于AXI_ARVALID和AXI_ARREADY,读数据的有效取决于S_AXI_RVALID和S_AXI_RREADY。所以以下代码的阅读分析注意也是围绕以上4个信号的有效时序。

以下程序我们把关键信号的代码拆分阅读

1:产生初始化信号

    //Generate a pulse to initiate AXI transaction.

    always @(posedge M_AXI_ACLK)                                        

     begin

     // Initiates AXI transaction delay

     if (M_AXI_ARESETN == 0 )

     begin

     init_txn_ff <= 1'b0;

     init_txn_ff2 <= 1'b0;

     end

     else

     begin

     init_txn_ff <= INIT_AXI_TXN;

     init_txn_ff2 <= init_txn_ff;

     end

     end

2:axi-full-master的axi_awvalid

当(~axi_awvalid && start_single_burst_write)==1条件满足,开始一次写传输,设置axi_awvalid有效。

     always @(posedge M_AXI_ACLK)

     begin

      

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )

     begin

     axi_awvalid <= 1'b0;

     end

     // If previously not valid , start next transaction

     else if (~axi_awvalid && start_single_burst_write)

     begin

     axi_awvalid <= 1'b1;

     end

     /* Once asserted, VALIDs cannot be deasserted, so axi_awvalid

     must wait until transaction is accepted */

     else if (M_AXI_AWREADY && axi_awvalid)

     begin

     axi_awvalid <= 1'b0;

     end

     else

     axi_awvalid <= axi_awvalid;

     end

3:axi-full-slave的axi_awaddr

写通道地址每当M_AXI_AWREADY && axi_awvalid地址加1

    // Next address after AWREADY indicates previous address acceptance

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     begin

     axi_awaddr <= 'b0;

     end

     else if (M_AXI_AWREADY && axi_awvalid)

     begin

     axi_awaddr <= axi_awaddr + burst_size_bytes;

     end

     else

     axi_awaddr <= axi_awaddr;

     end

4:axi-full-master的axi_wvalid

设置axi_wvalid <= 1'b1开始写数据。wnext信号有效代码axi_full_master写数据有效。

     assign wnext = M_AXI_WREADY & axi_wvalid;

    

    // WVALID logic, similar to the axi_awvalid always block above

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )

     begin

     axi_wvalid <= 1'b0;

     end

     // If previously not valid, start next transaction

     else if (~axi_wvalid && start_single_burst_write)

     begin

     axi_wvalid <= 1'b1;

     end

     /* If WREADY and too many writes, throttle WVALID

     Once asserted, VALIDs cannot be deasserted, so WVALID

     must wait until burst is complete with WLAST */

     else if (wnext && axi_wlast)

     axi_wvalid <= 1'b0;

     else

     axi_wvalid <= axi_wvalid;

     end

5:axi-full-master的axi_master_last

axi_master_last信号,当条件满足(((write_index == C_M_AXI_BURST_LEN-2 && C_M_AXI_BURST_LEN >= 2) && wnext) || (C_M_AXI_BURST_LEN == 1 ))==1的时候,axi_wlast <= 1'b1。这是VIVADO自带的模板,但是这里有个bug,那就是必须确保slave可以连续接收数据,假设发送last的时候wnext==0,这样就不能把最后一个数据正确写入到slave中了。

    //WLAST generation on the MSB of a counter underflow

    // WVALID logic, similar to the axi_awvalid always block above

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )

     begin

     axi_wlast <= 1'b0;

     end

     // axi_wlast is asserted when the write index

     // count reaches the penultimate count to synchronize

     // with the last write data when write_index is b1111

     // else if (&(write_index[C_TRANSACTIONS_NUM-1:1])&& ~write_index[0] && wnext)

     else if (((write_index == C_M_AXI_BURST_LEN-2 && C_M_AXI_BURST_LEN >= 2) && wnext) || (C_M_AXI_BURST_LEN == 1 ))

     begin

     axi_wlast <= 1'b1;

     end

     // Deassrt axi_wlast when the last write data has been

     // accepted by the slave with a valid response

     else if (wnext)

     axi_wlast <= 1'b0;

     else if (axi_wlast && C_M_AXI_BURST_LEN == 1)

     axi_wlast <= 1'b0;

     else

     axi_wlast <= axi_wlast;

     end

删除以上代码,并且添加以下代码:

     wire wlast = (write_index == C_M_AXI_BURST_LEN-1) && wnext;

     reg wlast_r1 = 1'b0;

     always @(posedge M_AXI_ACLK)

         wlast_r <= wlast;

 

     assign axi_wlast = (wlast_r==1'b0)&&(wlast==1'b1);

另外需要修改reg axi_wlast;为wire axi_wlast;

这样就可以确保发送wlast的时候数据肯定是有效的。

6:写次数记录write_index计数器

    /* Burst length counter. Uses extra counter register bit to indicate terminal

     count to reduce decode logic */

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 || start_single_burst_write == 1'b1)

     begin

     write_index <= 0;

     end

     else if (wnext && (write_index != C_M_AXI_BURST_LEN-1))

     begin

     write_index <= write_index + 1;

     end

     else

     write_index <= write_index;

     end

7:axi-full-master的axi_wdata

axi_full_master写数据计数写数据

    /* Write Data Generator

     Data pattern is only a simple incrementing count from 0 for each burst */

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     axi_wdata <= 'b1;

     //else if (wnext && axi_wlast)

     // axi_wdata <= 'b0;

     else if (wnext)

     axi_wdata <= axi_wdata + 1;

     else

     axi_wdata <= axi_wdata;

     end

8:axi-full-master的axi_bready

设置axi_bready信号

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )

     begin

     axi_bready <= 1'b0;

     end

     // accept/acknowledge bresp with axi_bready by the master

     // when M_AXI_BVALID is asserted by slave

     else if (M_AXI_BVALID && ~axi_bready)

     begin

     axi_bready <= 1'b1;

     end

     // deassert after one clock cycle

     else if (axi_bready)

     begin

     axi_bready <= 1'b0;

     end

     // retain the previous value

     else

     axi_bready <= axi_bready;

     end

9:axi-full-slave的axi_arvalid

Axi_full_master读通道的分析非常类似,代码是对称的。

当(~axi_arvalid && start_single_burst_read)==1条件满足,开始一次写传输,设置axi_arvalid有效。

    always @(posedge M_AXI_ACLK)

     begin

    

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )

     begin

     axi_arvalid <= 1'b0;

     end

     // If previously not valid , start next transaction

     else if (~axi_arvalid && start_single_burst_read)

     begin

     axi_arvalid <= 1'b1;

     end

     else if (M_AXI_ARREADY && axi_arvalid)

     begin

     axi_arvalid <= 1'b0;

     end

     else

     axi_arvalid <= axi_arvalid;

     end

 

10:axi-full-slave的axi_araddr

读地址计算

// Next address after ARREADY indicates previous address acceptance

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     begin

     axi_araddr <= 'b0;

     end

     else if (M_AXI_ARREADY && axi_arvalid)

     begin

     axi_araddr <= axi_araddr + burst_size_bytes;

     end

     else

     axi_araddr <= axi_araddr;

     end

11:axi-full-master的axi_rready

读数据准备好

    /*

     The Read Data channel returns the results of the read request

     In this example the data checker is always able to accept

     more data, so no need to throttle the RREADY signal

     */

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 )

     begin

     axi_rready <= 1'b0;

     end

     // accept/acknowledge rdata/rresp with axi_rready by the master

     // when M_AXI_RVALID is asserted by slave

     else if (M_AXI_RVALID)

     begin

     if (M_AXI_RLAST && axi_rready)

     begin

     axi_rready <= 1'b0;

     end

     else

     begin

     axi_rready <= 1'b1;

     end

     end

     // retain the previous value

     end

12:读次数记录read_index计数器

读数据索引计数

assign rnext = M_AXI_RVALID && axi_rready;

    // Burst length counter. Uses extra counter register bit to indicate

    // terminal count to reduce decode logic

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1 || start_single_burst_read)

     begin

     read_index <= 0;

     end

     else if (rnext && (read_index != C_M_AXI_BURST_LEN-1))

     begin

     read_index <= read_index + 1;

     end

     else

     read_index <= read_index;

     end

13:产生对比数据expected_rdata

数据expected_rdata用于和读出的M_AXI_RDATA进行对比以此验证数据的正确性。

    //Generate expected read data to check against actual read data

     always @(posedge M_AXI_ACLK)

     begin

        if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)// || M_AXI_RLAST)

            expected_rdata <= 'b1;

        else if (M_AXI_RVALID && axi_rready)

            expected_rdata <= expected_rdata + 1;

        else

            expected_rdata <= expected_rdata;

     end

14:比对数据正确性

读写数据比较

    //Check received read data against data generator

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     begin

     read_mismatch <= 1'b0;

     end

     //Only check data when RVALID is active

     else if (rnext && (M_AXI_RDATA != expected_rdata))

     begin

     read_mismatch <= 1'b1;

     end

     else

     read_mismatch <= 1'b0;

     end

15:读写状态机

读写状态机源码

//implement master command interface state machine

     always @ ( posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 1'b0 )

     begin

     // reset condition

     // All the signals are assigned default values under reset condition

     mst_exec_state <= IDLE;

     start_single_burst_write <= 1'b0;

     start_single_burst_read <= 1'b0;

     compare_done <= 1'b0;

     ERROR <= 1'b0;

     end

     else

     begin

     // state transition

     case (mst_exec_state)

     IDLE:

     // This state is responsible to wait for user defined C_M_START_COUNT

     // number of clock cycles.

     if ( init_txn_pulse == 1'b1)

     begin

     mst_exec_state <= INIT_WRITE;

     ERROR <= 1'b0;

     compare_done <= 1'b0;

     end

     else

     begin

     mst_exec_state <= IDLE;

     end

     INIT_WRITE:

     // This state is responsible to issue start_single_write pulse to

     // initiate a write transaction. Write transactions will be

     // issued until burst_write_active signal is asserted.

     // write controller

     if (writes_done)

     begin

     mst_exec_state <= INIT_READ;//

     end

     else

     begin

     mst_exec_state <= INIT_WRITE;

     if (~axi_awvalid && ~start_single_burst_write && ~burst_write_active)

     begin

     start_single_burst_write <= 1'b1;

     end

     else

     begin

     start_single_burst_write <= 1'b0; //Negate to generate a pulse

     end

     end

     INIT_READ:

     // This state is responsible to issue start_single_read pulse to

     // initiate a read transaction. Read transactions will be

     // issued until burst_read_active signal is asserted.

     // read controller

     if (reads_done)

     begin

     mst_exec_state <= INIT_COMPARE;

     end

     else

     begin

     mst_exec_state <= INIT_READ;

     if (~axi_arvalid && ~burst_read_active && ~start_single_burst_read)

     begin

     start_single_burst_read <= 1'b1;

     end

     else

     begin

     start_single_burst_read <= 1'b0; //Negate to generate a pulse

     end

     end

     INIT_COMPARE:

     // This state is responsible to issue the state of comparison

     // of written data with the read data. If no error flags are set,

     // compare_done signal will be asseted to indicate success.

     //if (~error_reg)

     begin

     ERROR <= error_reg;

     mst_exec_state <= IDLE;

     compare_done <= 1'b1;

     end

     default :

     begin

     mst_exec_state <= IDLE;

     end

     endcase

     end

     end //MASTER_EXECUTION_PROC

整理成流程图,更加容易理解:

16:正在写burst_write_active

burst_write_active代表正在写操作

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     burst_write_active <= 1'b0;

      

     //The burst_write_active is asserted when a write burst transaction is initiated

     else if (start_single_burst_write)

     burst_write_active <= 1'b1;

     else if (M_AXI_BVALID && axi_bready)

     burst_write_active <= 0;

     end

17:写完成writes_done

写数据完成writes_done信号

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     writes_done <= 1'b0;

    

     //The writes_done should be associated with a bready response

     //else if (M_AXI_BVALID && axi_bready && (write_burst_counter == {(C_NO_BURSTS_REQ-1){1}}) && axi_wlast)

     else if (M_AXI_BVALID && (write_burst_counter[C_NO_BURSTS_REQ]) && axi_bready)

     writes_done <= 1'b1;

     else

     writes_done <= writes_done;

     end

18:正在读burst_read_active

读burst_read_active代表正在读数据

// burst_read_active signal is asserted when there is a burst write transaction

     // is initiated by the assertion of start_single_burst_write. start_single_burst_read

     // signal remains asserted until the burst read is accepted by the master

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     burst_read_active <= 1'b0;

    

     //The burst_write_active is asserted when a write burst transaction is initiated

     else if (start_single_burst_read)

     burst_read_active <= 1'b1;

     else if (M_AXI_RVALID && axi_rready && M_AXI_RLAST)

     burst_read_active <= 0;

     end

19:读完成reads_done

读数据完成reads_done信号

     always @(posedge M_AXI_ACLK)

     begin

     if (M_AXI_ARESETN == 0 || init_txn_pulse == 1'b1)

     reads_done <= 1'b0;

    

     //The reads_done should be associated with a rready response

     //else if (M_AXI_BVALID && axi_bready && (write_burst_counter == {(C_NO_BURSTS_REQ-1){1}}) && axi_wlast)

     else if (M_AXI_RVALID && axi_rready && (read_index == C_M_AXI_BURST_LEN-1) && (read_burst_counter[C_NO_BURSTS_REQ]))

     reads_done <= 1'b1;

     else

     reads_done <= reads_done;

     end

20:IP的更新

由于修改了代码,需要先更新IP状态,完成IP更新

4.4实验结果

仿真结果

一次axi4写操作burst lenth=16如下图所示,由于WREADY信号不是连续的,所以可以传输效率不是最高的

一共进行64次burst共计写了1024个32bit数据

一次读操作的burst lenth也是16如下图,但是可以看到读数据时连续的,所以效率最高

一共进行64次burst共计读了1024个32bit数据

 

可以看到读出的数据RDATA和expected_rdata一致,所以代码正确。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM