03AXI4总线axi-full-slave(AXI4总线实战)


软件版本:vitis2020.2(vivado2020.2)

操作系统:WIN10 64bit

硬件平台:适用XILINX A7/K7/Z7/ZU/KU系列FPGA(米联客(milianke)MZU07A-EG硬件开发平台)

登录"米联客"FPGA社区-www.uisrc.com视频课程、答疑解惑!

3.1概述

    使用XILINX 的软件工具VIVADO以及XILINX的7代以上的FPGA或者SOC掌握AXI-4总线结束,并且可以灵活使用AXI-4总线技术完成数据的交换,可以让我们在构建强大的FPGA内部总线数据互联通信方面取得高效、高速、标准化的优势。

    关于AXI4总线协议的部分介绍请阅读"01AXI4总线axi-lite-slave"。

本文实验目的:

1:掌握基于VIVADO工具产生AXI协议模板

2:掌握通过VIVADO工具产生AXI-full-slave代码

3:理解AXI-full-slave中自定义寄存器的地址分配

4:掌握通过VIVADO封装AXI-full-slave图形化IP

5:通过仿真验证AXI-full-slave IP的工作是否正常。

3.2创建axi4-full-slave总线接口IP

新建fpga工程,过程省略

新建完成工程后,单击菜单栏Tools->Create and Package New IP,开始创建一个AXI4-Full接口总线IP

选择使用vivado自带的AXI总线模板创建一个AXI4-FULL接口IP

 

设置IP的名字为saxi_full

模板支持3中协议,分别是AXI4-Full AXI4-Lite AXI4-Stream, 这里选择ful;

总线包括Master和Slave两种模式,这里选择Slave模式

这里选择Verify Peripheral IP using AXI4 VIP 可以对AXI4-FULL快速验证

 

 

单击Finish 后展开VIVADO自动产生的demo,单击Block Design的工程,可以看到如下2个IP。其中saxi_full_0就是我们自定义的IP,另外一个master_0是用来读写我们自定义的saxi_full_0,以此验证我们的IP正确性。

采用默认地址分配即可

继续站看代码看看里面有什么东西

 

3.3程序分析

1:axi-full-slave的axi_awready

当满足条件(~axi_awready && S_AXI_AWVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)=1的时候表示可以进行一次AXI-FULL的burst写操作了,这个时候AXI-FULL-SLAVE设置axi_awready <= 1'b1和axi_awv_awr_flag <= 1'b1

    // axi_awready is asserted for one S_AXI_ACLK clock cycle when both

    // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is

    // de-asserted when reset is low.

    always @( posedge S_AXI_ACLK )

    begin

     if ( S_AXI_ARESETN == 1'b0 )

     begin

     axi_awready <= 1'b0;

     axi_awv_awr_flag <= 1'b0;

     end

     else

     begin

     if (~axi_awready && S_AXI_AWVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)

     begin

     // slave is ready to accept an address and

     // associated control signals

     axi_awready <= 1'b1;

     axi_awv_awr_flag <= 1'b1;

     // used for generation of bresp() and bvalid

     end

     else if (S_AXI_WLAST && axi_wready)

     // preparing to accept next address after current write burst tx completion

     begin

     axi_awv_awr_flag <= 1'b0;

     end

     else

     begin

     axi_awready <= 1'b0;

     end

     end

    end

2:axi-full-slave的axi_awaddr

AXI的burst模式包括3种:

1:fixed burst这种模式下地址都是相同的

2: incremental burst这种模式下地址递增

3: Wrapping burst 这只模式下地址达到设置的最大地址边界后返回原来的地址。

本文demo种以下三种模式的具体代码如下:

    // This process is used to latch the address when both

    // S_AXI_AWVALID and S_AXI_WVALID are valid.

    always @( posedge S_AXI_ACLK )

    begin

     if ( S_AXI_ARESETN == 1'b0 )

     begin

     axi_awaddr <= 0;

     axi_awlen_cntr <= 0;

     axi_awburst <= 0;

     axi_awlen <= 0;

     end

     else

     begin

     if (~axi_awready && S_AXI_AWVALID && ~axi_awv_awr_flag)

     begin

     // address latching

     axi_awaddr <= S_AXI_AWADDR[C_S_AXI_ADDR_WIDTH - 1:0];

     axi_awburst <= S_AXI_AWBURST;

     axi_awlen <= S_AXI_AWLEN;

     // start address of transfer

     axi_awlen_cntr <= 0;

     end

     else if((axi_awlen_cntr <= axi_awlen) && axi_wready && S_AXI_WVALID)

     begin

 

     axi_awlen_cntr <= axi_awlen_cntr + 1;

 

     case (axi_awburst)

     2'b00: // fixed burst

     // The write address for all the beats in the transaction are fixed

     begin

     axi_awaddr <= axi_awaddr;

     //for awsize = 4 bytes (010)

     end

     2'b01: //incremental burst

     // The write address for all the beats in the transaction are increments by awsize

     begin

     axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;

     //awaddr aligned to 4 byte boundary

     axi_awaddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};

     //for awsize = 4 bytes (010)

     end

     2'b10: //Wrapping burst

     // The write address wraps when the address reaches wrap boundary

     if (aw_wrap_en)

     begin

     axi_awaddr <= (axi_awaddr - aw_wrap_size);

     end

     else

     begin

     axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;

     axi_awaddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};

     end

     default: //reserved (incremental burst for example)

     begin

     axi_awaddr <= axi_awaddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;

     //for awsize = 4 bytes (010)

     end

     endcase

     end

     end

    end

3:axi-full-slave的axi_wready

当满足条件( ~axi_wready && S_AXI_WVALID && axi_awv_awr_flag)==1 设置axi_wready为1.这里可以看出,S_AXI_WVALID必须在一次burst种持续有效,直到满足条件(S_AXI_WLAST && axi_wready),否则AXI-FULL-SLAVE会出错,这一点有别于AXI-LITE-SLAVE每次只读写一个数据。

    // axi_wready is asserted for one S_AXI_ACLK clock cycle when both

    // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is

    // de-asserted when reset is low.

    always @( posedge S_AXI_ACLK )

    begin

     if ( S_AXI_ARESETN == 1'b0 )

     begin

     axi_wready <= 1'b0;

     end

     else

     begin

     if ( ~axi_wready && S_AXI_WVALID && axi_awv_awr_flag)

     begin

     // slave can accept the write data

     axi_wready <= 1'b1;

     end

     //else if (~axi_awv_awr_flag)

     else if (S_AXI_WLAST && axi_wready)

     begin

     axi_wready <= 1'b0;

     end

     end

    end

4:axi-full-slave的axi_bvalid信号

axi_bvalid用于告知axi master axi-slave端已经完成数据接收了

给出ACK,写操作LAST信号的下一个时钟,AXI-SLAVE给出ACK信号

    always @( posedge S_AXI_ACLK )

    begin

     if ( S_AXI_ARESETN == 1'b0 )

     begin

     axi_bvalid <= 0;

     axi_bresp <= 2'b0;

     axi_buser <= 0;

     end

     else

     begin

     if (axi_awv_awr_flag && axi_wready && S_AXI_WVALID && ~axi_bvalid && S_AXI_WLAST )

     begin

     axi_bvalid <= 1'b1;

     axi_bresp <= 2'b0;

     // 'OKAY' response

     end

     else

     begin

     if (S_AXI_BREADY && axi_bvalid)

     //check if bready is asserted while bvalid is high)

     //(there is a possibility that bready is always asserted high)

     begin

     axi_bvalid <= 1'b0;

     end

     end

     end

     end

5:axi-full-slave的axi_arready信号

当满足条件(~axi_arready && S_AXI_ARVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)=1的时候表示可以进行一次AXI-FULL的burst读操作了,这个时候AXI -FULL-SLAVE设置axi_arready <= 1'b1和axi_arv_arr_flag <= 1'b1

// axi_arready is asserted for one S_AXI_ACLK clock cycle when

    // S_AXI_ARVALID is asserted. axi_awready is

    // de-asserted when reset (active low) is asserted.

    // The read address is also latched when S_AXI_ARVALID is

    // asserted. axi_araddr is reset to zero on reset assertion.

 

    always @( posedge S_AXI_ACLK )

    begin

     if ( S_AXI_ARESETN == 1'b0 )

     begin

     axi_arready <= 1'b0;

     axi_arv_arr_flag <= 1'b0;

     end

     else

     begin

     if (~axi_arready && S_AXI_ARVALID && ~axi_awv_awr_flag && ~axi_arv_arr_flag)

     begin

     axi_arready <= 1'b1;

     axi_arv_arr_flag <= 1'b1;

     end

     else if (axi_rvalid && S_AXI_RREADY && axi_arlen_cntr == axi_arlen)

     // preparing to accept next address after current read completion

     begin

     axi_arv_arr_flag <= 1'b0;

     end

     else

     begin

     axi_arready <= 1'b0;

     end

     end

    end

6:axi-full-slave的axi_araddr信号

AXI-的读写操作几乎是相对的代码,AXI的burst模式包括3种:

1:fixed burst这种模式下地址都是相同的

2: incremental burst这种模式下地址递增

3: Wrapping burst 这只模式下地址达到设置的最大地址边界后返回原来的地址。

本文demo种以下三种模式的具体代码如下:

    //This process is used to latch the address when both

    //S_AXI_ARVALID and S_AXI_RVALID are valid.

    always @( posedge S_AXI_ACLK )

    begin

     if ( S_AXI_ARESETN == 1'b0 )

     begin

     axi_araddr <= 0;

     axi_arlen_cntr <= 0;

     axi_arburst <= 0;

     axi_arlen <= 0;

     axi_rlast <= 1'b0;

     axi_ruser <= 0;

     end

     else

     begin

     if (~axi_arready && S_AXI_ARVALID && ~axi_arv_arr_flag)

     begin

     // address latching

     axi_araddr <= S_AXI_ARADDR[C_S_AXI_ADDR_WIDTH - 1:0];

     axi_arburst <= S_AXI_ARBURST;

     axi_arlen <= S_AXI_ARLEN;

     // start address of transfer

     axi_arlen_cntr <= 0;

     axi_rlast <= 1'b0;

     end

     else if((axi_arlen_cntr <= axi_arlen) && axi_rvalid && S_AXI_RREADY)

     begin

      

     axi_arlen_cntr <= axi_arlen_cntr + 1;

     axi_rlast <= 1'b0;

      

     case (axi_arburst)

     2'b00: // fixed burst

     // The read address for all the beats in the transaction are fixed

     begin

     axi_araddr <= axi_araddr;

     //for arsize = 4 bytes (010)

     end

     2'b01: //incremental burst

     // The read address for all the beats in the transaction are increments by awsize

     begin

     axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;

     //araddr aligned to 4 byte boundary

     axi_araddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};

     //for awsize = 4 bytes (010)

     end

     2'b10: //Wrapping burst

     // The read address wraps when the address reaches wrap boundary

     if (ar_wrap_en)

     begin

     axi_araddr <= (axi_araddr - ar_wrap_size);

     end

     else

     begin

     axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB] + 1;

     //araddr aligned to 4 byte boundary

     axi_araddr[ADDR_LSB-1:0] <= {ADDR_LSB{1'b0}};

     end

     default: //reserved (incremental burst for example)

     begin

     axi_araddr <= axi_araddr[C_S_AXI_ADDR_WIDTH - 1:ADDR_LSB]+1;

     //for arsize = 4 bytes (010)

     end

     endcase

     end

     else if((axi_arlen_cntr == axi_arlen) && ~axi_rlast && axi_arv_arr_flag )

     begin

     axi_rlast <= 1'b1;

     end

     else if (S_AXI_RREADY)

     begin

     axi_rlast <= 1'b0;

     end

     end

    end

7:axi-full-slave的axi_rvalid信号

在用VIVADO模板产生的demo种,读操作数据不是连续读的,通过axi_rvalid设置AXI-SLAVE FULL 读数据有效。

    always @( posedge S_AXI_ACLK )

    begin

     if ( S_AXI_ARESETN == 1'b0 )

     begin

     axi_rvalid <= 0;

     axi_rresp <= 0;

     end

     else

     begin

     if (axi_arv_arr_flag && ~axi_rvalid)

     begin

     axi_rvalid <= 1'b1;

     axi_rresp <= 2'b0;

     // 'OKAY' response

     end

     else if (axi_rvalid && S_AXI_RREADY)

     begin

     axi_rvalid <= 1'b0;

     end

     end

    end

8:数据保存到bock ram

以下是利用block ram完成数据的保存和回读

 

// implement Block RAM(s)

    generate

     for(i=0; i<= USER_NUM_MEM-1; i=i+1)

     begin:BRAM_GEN

     wire mem_rden;

     wire mem_wren;

      

     assign mem_wren = axi_wready && S_AXI_WVALID ;

      

     assign mem_rden = axi_arv_arr_flag ; //& ~axi_rvalid

      

     for(mem_byte_index=0; mem_byte_index<= (C_S_AXI_DATA_WIDTH/8-1); mem_byte_index=mem_byte_index+1)

     begin:BYTE_BRAM_GEN

     wire [8-1:0] data_in ;

     wire [8-1:0] data_out;

     reg [8-1:0] byte_ram [0 : 15];

     integer j;

      

     //assigning 8 bit data

     assign data_in = S_AXI_WDATA[(mem_byte_index*8+7) -: 8];

     assign data_out = byte_ram[mem_address];

      

     always @( posedge S_AXI_ACLK )

     begin

     if (mem_wren && S_AXI_WSTRB[mem_byte_index])

     begin

     byte_ram[mem_address] <= data_in;

     end

     end

      

     always @( posedge S_AXI_ACLK )

     begin

     if (mem_rden)

     begin

     mem_data_out[i][(mem_byte_index*8+7) -: 8] <= data_out;

     end

     end

      

     end

     end

    endgenerate

3.4实验结果

仿真结果:


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM