想写什么写什么,学了什么写什么,可能对其他人毫无价值。
零、引
什么是线性代数?
不知道。
感性理解就是:二喜哥的回答(安利)。
理性理解就是:百度百科。
百度百科老谜语人了。
一、矩阵
当我最开始学矩阵的时候,就只记住了乘法可以用来矩阵加速,并且规则是左行右列,也算是个小口诀吧。
现在我知道了,矩阵可以用来表示向量!
比如一个 \(n\times m\) 的矩阵可以用来表示 \(n\) 维的行向量或是 \(m\) 维的列向量。
特殊的, \(n=m\) 的矩阵叫做方阵。
而这些向量可以看作高维空间的基底。
二、矩阵的初等变换
1.交换行(列)
交换两个向量。
2.将某行(列)扩大 \(k\) 倍
相当于向量扩倍,显然方向不会改变,所以可以认为是线性变换。
3.将某行(列)的 \(k\) 倍加到另一行(列)
显然,该是基底的还是基底。
三、行列式 det
只有方阵才存在行列式,矩阵 \(A\) 的行列式用 \(det(A)\) 或者 \(|A|\) 表示。
1.线性相关与无关
有混子就是线性相关,表示某些向量可以填上一些系数来表示其它向量,而被表示的向量其实就是混子。
没有混子就是线性无关,在这个大家庭中,人人都有自己的作用。
2.行列式表示什么
上文提到,向量可以看作是基底,而行列式有很多作用,比如它如果是零,那么表示基底当中有混子!
可以用二维中三点共线,三维中四点共面来帮助理解。本来我可以表示更高维度的东西,但是我们当中有混子,所以只能降维度。而求行列式的过程和高斯消元前半部分不谋而合,行列式为 \(0\) 即出现了自由变元,也可以解释降维。
3.逆矩阵
如果行列式为 \(0\),表示降维了,你无法得到它的逆矩阵,也就是说降维后你无法还原出它原来的样子。
否则你可以求出它的逆矩阵。
满足这样一个关系:
\(\left[\begin{matrix} 原 矩 阵 \end{matrix} \right] \times \left[\begin{matrix} 逆 矩 阵 \end{matrix} \right] = \left[\begin{matrix} 单 位 矩 阵 \end{matrix} \right]\)
4.行列式的变与不变
对一个矩阵转置,行列式不变。
初等变换 \(1\) 使行列式变号。
初等变换 \(2\) 使行列式扩大 \(k\) 倍。
初等变换 \(3\) 不会改变行列式。
5.行列式计算
(1).高斯消元
消成上三角然后将主对角线乘起来即可。
尽管它跟高斯消元没有半毛钱关系,但是它们却是同一个实现方法,所以还是把这个方法叫做高斯消元。
(2).矩阵乘法
①简单情况
对于 \(A,B\) 两个方阵,有:
\(|AB|=|A|\times |B|.\)
当然它们得是同阶的。
②复杂情况
建议先把下面的 四、秩 rank
看了。
即 \(A,B\) 为矩阵,其中 \(A\) 为 \(s\times n\) 的矩阵,\(B\) 为 \(n \times s\) 的矩阵。\((s<n)\)
索引:\(s>n\) 的情况在下文的 四、秩 3.不等式们
中有提到。
介绍一个新工具:\(\tt Binet-Cauchy\) 定理。
简单来讲,就是讲 \(A,B\) 的 \(s\times s\) 的子矩阵依次全部搞出来,然后对应两两相乘后求行列式,再把所有的都加起来就得到了 \(|AB|\)。
两两相乘求行列式可以用简单情况的方法做。
四、秩 rank
1.什么是秩?
我们可以理解为一个矩阵中向量最高可以表示的维度。
因此行向量的秩称为行秩,列向量的秩称为列秩,两者一定相等,称为该矩阵的秩。
比如一个 \(3\times 3\) 的矩阵,这三个向量如果可以组成三维空间,那么秩为 \(3\)。
如果落在一个平面内,那么秩为 \(2\)。
更混的,如果它们全部在一条直线上,秩为 \(1\)。
2.满秩
如果这个矩阵当中没有混子,也就是没有降维,则称这种情况为满秩。
即矩阵 \(A\) 满秩的充要条件为 \(|A| \not= 0\)。
3.不等式们
(1).
由上面的定义,我们可以轻松得到这样一个不等式:
对于一个 \(n\times m\) 的矩阵 \(A\),\(rank(A)\le \min\{n,m\}.\)
(2).
\(rank(AB)\le \min\{rank(A),rank(B)\}.\)
证明(不是很严谨):
令 \(C=AB\),将 \(A\) 看做多个向量,\(B\) 看做常数,于是乎 \(C\) 可以由 \(A\) 线性表达得到,所以 \(rank(C)\le rank(A)\);
\(C^T=(AB)^T=B^TA^T\),而转置后秩不变,所以 \(rank(C)=rank(C^T)\le rank(B^T)=rank(B).\)
好像也不是那么不严谨。
因此我们可以证明这样一个小结论:
若有一个 \(s\times n\) 的矩阵 \(A\) 和 \(n\times s\) 的矩阵 \(B(s>n)\),那么 \(|AB|=0\),即不满秩。
五、维数 dim
与秩进行区分,秩是向量可以表示的最高维度,或者说是其生成的空间的维度。
维数是基底中向量的个数。
两者无本质联系。
六、ker 和 im
咕咕咕~