定义 1:\(n\)阶行列式即\(n\)级矩阵\(A = (a_{ij})\)的行列式规定为:
\[\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} := \sum_{j_1j_2\dots j_n}(-1)^{\tau(j_1j_2\dots j_n)}a_{1j_1}a_{2j_2}\dots a_{nj_n} \]
其中\(\sum\)是对所有\(n\)元排列求和。
定义 2:上三角行列式
\[\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{vmatrix} \]
定理 1:上三角行列式为主对角线上\(n\)个元素的乘积
定理 2:
\[|A| = \sum_{k_1k_2\dots k_n}(-1)^{\tau(i_1i_2\dots i_n)+\tau(k_1k_2\dots k_n)}a_{i_1k_1}a_{i_2s_2}\dots a_{i_nk_n} \]
证明:设\(n\)阶行列式某一项为\((-1)^{\tau(j_1j_2\dots j_n)}a_{1j_1}a_{2j_2}\dots a_{nj_n}\)
根据乘法交换律,通过\(s\)次两个元素交换位置得\(a_{i_1k_1}a_{i_2s_2}\dots a_{i_nk_n}\)
即:\((-1)^{\tau(i_1i_2\dots i_n)} = (-1)^s(-1)^{\tau(123\dots n)} = (-1)^s\)
\((-1)^{\tau(k_1k_2\dots k_n)} = (-1)^s(-1)^{\tau(j_1j_2\dots j_n)}\)
两式相乘得:\((-1)^{\tau(i_1i_2\dots i_n)+\tau(k_1k_2\dots k_n)} = (-1)^{2s}(-1)^{\tau(j_1j_2\dots j_n)} = (-1)^{\tau(j_1j_2\dots j_n)}\)
推论:
\[\begin{aligned} |A| &= \sum_{j_1j_2\dots j_n}(-1)^{\tau(j_1j_2\dots j_n)}a_{1j_1}a_{2j_2}\dots a_{nj_n} \\ &= \sum_{i_1i_2\dots i_n}(-1)^{\tau(i_1i_2\dots i_n)+\tau(12\dots n)}a_{i_11}a_{i_22}\dots a_{i_nn} \\ &= \sum_{i_1i_2\dots i_n}(-1)^{\tau(i_1i_2\dots i_n)}a_{i_11}a_{i_22}\dots a_{i_nn} \end{aligned} \]