「多项式泰勒展开」


前置知识

导数

微积分

基本定义

在数学中,泰勒级数(英语:Taylor series)用无限项连加式——级数来表示一个函数,这些相加的项由函数在某一点的导数求得。

泰勒级数是以于1715年发表了泰勒公式的英国数学家布鲁克·泰勒(Sir Brook Taylor)的名字来命名的。

通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数,以苏格兰数学家科林·麦克劳林的名字命名。

泰勒级数在近似计算中有重要作用。

——百度百科

通俗得来说,假设我们有一个多项式 \(F(x)\),要求 \(F(x)\) 满足某些条件,通常使用泰勒展开。

假设有一个 \(x_0\) 能使 \(F(x_0)\) 满足条件,则可求:

\[F(x)=\sum_{n=0}^{\infty}\frac{F^{(n)}(x_0)(x-x_0)^n}{n!}(F^{(n)}为F(x)的n阶导) \]


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM