诱导公式:奇变偶不变,符号看象限
无敌六边形:
其中有三组关系:
- 边上的三角函数两边相乘等于中间
- 染了色的三角形上面两个三角函数相乘等于下面的
- 相对的三角函数是倒数关系
和差角公式:
- \(\sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\sin\beta\cos\alpha\)
- \(\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta\)
- \(\tan(\alpha\pm\beta)=\dfrac{\tan\alpha\pm\tan\beta}{1\mp\tan\alpha\tan\beta}\)
二倍角公式:
- \(\sin2\alpha=2\sin\alpha\cos\alpha\)
- \(\begin{aligned}\cos2\alpha&=\cos^2\alpha-\sin^2\alpha\\&=2\cos^2\alpha-1\\&=1-2\sin^2\alpha\end{aligned}\)
- \(\tan2\alpha=\dfrac{2\tan\alpha}{1-\tan^2\alpha}\)
三倍角公式:
- \(\sin3\alpha=3\sin\alpha\cos^2\alpha-\sin^3\alpha\)
- \(\cos3\alpha=\cos^3\alpha-3\sin^2\alpha\cos\alpha\)
半角公式:
- \(\sin\dfrac{\alpha}2=\pm\sqrt{\dfrac{1-\cos\alpha}2}\),符号看象限
- \(\cos\dfrac{\alpha}2=\pm\sqrt{\dfrac{1+\cos\alpha}2}\),符号看象限
- \(\tan\dfrac{\alpha}2=\pm\sqrt{\dfrac{1-\cos\alpha}{1+\cos\alpha}}\),符号看象限
- \(\begin{aligned}\tan\dfrac{\alpha}2&=\dfrac{\sin\alpha}{1+\cos\alpha}\\&=\dfrac{1-\cos\alpha}{\sin\alpha}\\\end{aligned}\)
点鞭炮公式:
\[\cos\theta\cos2\theta\cos4\theta\cdots\cos2^n\theta=\sum_{i=0}^n\cos2^i\theta=\dfrac{\sin2^{n+1}\alpha}{2^{n+1}\sin\alpha} \]
降幂公式:
- \(\sin\alpha\cos\alpha=\dfrac{\sin2\alpha}2\)
- \(\sin^2\alpha=\dfrac{1-\cos2\alpha}2\)
- \(\cos^2\alpha=\dfrac{1+\cos2\alpha}2\)
\(\lambda\) 等分点:
若 \(\overrightarrow{p_1}\overrightarrow p=\lambda\overrightarrow p\overrightarrow{p_2}\),其中 \(p_1(a_1,a_2,\cdots,a_n),p_2(b_1,b_2,\cdots,b_n)\)(\(n\) 维坐标,特殊情况是 \(n=2\) 或 \(n=3\))
则
\[p=\left(\dfrac{a_1+\lambda b_1}{1+\lambda},\dfrac{a_2+\lambda b_2}{1+\lambda},\cdots,\dfrac{a_n+\lambda b_n}{1+\lambda}\right) \]
辅助角公式:
\[a\sin\theta+b\cos\theta=\sqrt{a^2+b^2}\sin(\theta+\varphi) \]
其中 \(\tan\varphi=\dfrac ba\)
和差化积 & 积化和差 公式:
- \(\sin\alpha\cos\beta=\dfrac 12(\sin(\alpha+\beta)+\sin(\alpha-\beta))\)
- \(\cos\alpha\sin\beta=\dfrac 12(\sin(\alpha+\beta)-\sin(\alpha-\beta))\)
- \(\cos\alpha\cos\beta=\dfrac 12(\cos(\alpha+\beta)+\cos(\alpha-\beta))\)
- \(\sin\alpha\sin\beta=-\dfrac 12(\cos(\alpha+\beta)-\cos(\alpha-\beta))\)
- \(\sin\theta+\sin\varphi=2\sin\dfrac{\theta+\varphi}2\cos\dfrac{\theta-\varphi}2\)
- \(\sin\theta-\sin\varphi=2\cos\dfrac{\theta+\varphi}2\sin\dfrac{\theta-\varphi}2\)
- \(\cos\theta+\cos\varphi=2\cos\dfrac{\theta+\varphi}2\cos\dfrac{\theta-\varphi}2\)
- \(\cos\theta-\cos\varphi=-2\sin\dfrac{\theta+\varphi}2\sin\dfrac{\theta-\varphi}2\)