接草成环问题


问题描述:

春天里,校园的草坪上有一对情侣,女孩希望男孩送给她一个花环,于是扯了6根花草,握在手中上下两端分别露出6个头和尾,让男孩将将上下两端的6个头任意两两相接, 6个尾任意两两相接.求男孩能结成一个花环的概率.

解:

6个头两两相接(无论如何接)将构成3根草,然后连接6个尾:实际上相当于6个元素分成3组,每组2个,但没有组号区别。所以共有 \(\displaystyle\frac{C_6^2C_4^2C_2^2}{3!}\) 种分法。注意,这个式子的分母是有顺序的排列,但是我们不需要顺序,所以要排除因为顺序带来的重复分法,所以要除以分子 \(3!\) (因为两个一组,共有三组,而组的内部不需要考虑重复)。然后考虑能接成环的分法。我们不妨固定一组草,然后分析草的一端,发现其有4种接法和令两组草的其中一端相接,而接好了这一端之后,另一端的接法显然就可以分析出来有两种,故共有 \(4 \times 2\) 种,因此所求概率为 \(\displaystyle\frac{8}{15}\).


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM