辅助多项式解决一些中值定理问题


开门见山吧,所谓辅助多项式即是当预证结论为“fn(ξ)=k”,且题干条件较多时,我们可以构造一个n项多项式P(x),使得P(x)满足题干中f(x)应该满足的条件,然后令F(x)=f(x)-P(x),再对F(x)使用多次罗尔定理即可!(注:n的取法)

1、例题

见到题目给出三个点我们很容易想到罗尔定理

却发现这三个点不相等,那么我们会立马想到泰勒定理

但在考研数学中不能直接使用导数介值定理(这里注意本题的题干[没给连续]),所以我们可以想到什么来规避它呢,今天新鲜学习,偷师凯哥,到手一招,非常实用!

构造辅助多项式:

2、真题

3、特殊情况

在汤神讲义中见到f、f、f'直接泰勒就行了,这里为了学习一种特殊情况,故延伸此题。

看结论,三次函数,但题干中只有3个条件,那么如何解4个参数呢?——给P(x)强加一个有用的约束!

构造函数:

为何要这样约束:

接下来有:


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM