大数定理,中心极限定理以及一些常见分布


这样记录东西没有任何意义,研究一下起源,应用,多带思考才有价值

一、大数定理

(1)小数定律:

  • 如果统计数据很少,那么事件就表现为各种极端情况
  • 而这些情况都是偶然事件
  • 跟它的期望值一点关系都没有

(2)大数定律:

  • 如果数据足够大,那么事件出现的概率越趋近于它的期望值

 

二、中心极限定理

  给定任意一个分布的总体,我每次从这些总体中随机抽取n个抽样,一共抽m次。然后把这m组抽样分别求出平均值,平均值近似服从正太分布

 

三、常见的分布

1、均匀分布

样本x落在区间 a~b的概率是一样的。x的概率密度为

$$f(x)=\frac{1}{b-a}$$

 

2、伯努利分布

样本的结果只有两种。例如抛硬币,非0即1。

 

3、二项分布

做n次伯努利实验,每次结果只有0,1。如果n=1的话显然是伯努利分布

$$P(x=k)=C_{n}^{k}p^{k}(1-p)^{n-k}$$

 

4、泊松分布

假设我们已知样本出现次数的均值为λ,则在一定时间内样本发生的次数,这种样本的概率分布也叫做泊松分布,其属于离散分布。

$$P(x=k)=e^{-\lambda }\frac{\lambda ^{k}}{k^{!}}$$

 

5、指数分布

若一个样本在单位时间内发生的期望已知λ,则其在时间t内发生的概率分布为指数分布

$$P(t)=1-e^{-\lambda t}$$

  

  • 泊松分布属于统计发生的次数
  • 指数分布统计是否发生 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM