1.accuracy_score
(取值在0-1之间,值越大越好)
理解:分类准确率分数是指所有分类正确的百分比。分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型。
sklearn形式:sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
import numpy as np from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3] y_true = [0, 1, 2, 3] accuracy_score(y_true, y_pred) 0.5 accuracy_score(y_true, y_pred, normalize=False) 2
2.mean_absolute_error (MAE)
(取值0 - +∞,越小越好)
理解:实际值与预测值的误差绝对值求平均(一般用在回归分析中)
sklearn形式:from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error # MSE mse_predict = mean_squared_error(y_test, y_predict) # MAE mae_predict = mean_absolute_error(y_test, y_predict) # y_test:测试数据集中的真实值 # y_predict:根据测试集中的x所预测到的数值