sklearn中的回归器性能评估方法


  • explained_variance_score()
  • mean_absolute_error()
  • mean_squared_error()
  • r2_score() 

以上四个函数的相同点:

  • 这些函数都有一个参数“multioutput”,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来
  • 它的默认值是“uniform_average”,他就是将所有预测目标值的损失以等权重的方式平均起来
  • 如果你传入了一个shape为(n_oupputs,)的ndarray,那么数组内的数将被视为是对每个输出预测损失(或得分)的加权值,所以最终的损失就是按照你锁指定的加权方式来计算的
  • 如果multioutput是“raw_values”,那么所有的回归目标的预测损失或预测得分都会被单独返回一个shape是(n_output)的数组中

explained_variance_score

#explained_variance_score from sklearn.metrics import explained_variance_score y_true=[3,-0.5,2,7] y_pred=[2.5,0.0,2,8] print(explained_variance_score(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]] y_pred=[[0,2],[-1,2],[8,-5]] print(explained_variance_score(y_true,y_pred,multioutput="raw_values")) print(explained_variance_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果
#0.957173447537 #[ 0.96774194 1. ] #0.990322580645

mean_absolute_error

#mean_absolute_error from sklearn.metrics import mean_absolute_error y_true=[3,0.5,2,7] y_pred=[2.5,0.0,2,8] print(mean_absolute_error(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]] y_pred=[[0,2],[-1,2],[8,-5]] print(mean_absolute_error(y_true,y_pred)) print(mean_absolute_error(y_true,y_pred,multioutput="raw_values")) print(mean_absolute_error(y_true,y_pred,multioutput=[0.3,0.7])) #结果 #0.5 #0.75 #[ 0.5 1. ] #0.85

mean_squared_error

#mean_squared_error from sklearn.metrics import mean_squared_error y_true=[3,-0.5,2,7] y_pred=[2.5,0.0,2,8] print(mean_squared_error(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]] y_pred=[[0,2],[-1,2],[8,-5]] print(mean_squared_error(y_true,y_pred)) #结果 #0.375 #0.708333333333

median_absolute_error

#median_absolute_error from sklearn.metrics import median_absolute_error y_true=[3,-0.5,2,7] y_pred=[2.5,0.0,2,8] print(median_absolute_error(y_true,y_pred)) #结果 #0.5

r2_score

 

#r2_score from sklearn.metrics import r2_score y_true=[3,-0.5,2,7] y_pred=[2.5,0.0,2,8] print(r2_score(y_true,y_pred)) y_true=[[0.5,1],[-1,1],[7,-6]] y_pred=[[0,2],[-1,2],[8,-5]] print(r2_score(y_true,y_pred,multioutput="variance_weighted")) y_true=[[0.5,1],[-1,1],[7,-6]] y_pred=[[0,2],[-1,2],[8,-5]] print(r2_score(y_true,y_pred,multioutput="uniform_average")) print(r2_score(y_true,y_pred,multioutput="raw_values")) print(r2_score(y_true,y_pred,multioutput=[0.3,0.7])) #结果 #0.948608137045 #0.938256658596 #0.936800526662 #[ 0.96543779 0.90816327] #0.92534562212


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM