https://www.cnblogs.com/mindy-snail/p/12445973.html 1.confusion_matrix 利用混淆矩阵进行评估 混淆矩阵说白了就是一张表格- 所有正确的预测结果都在对角线上,所以从混淆矩阵中可以很方便直观的看出哪里有错 ...
explained variance score mean absolute error mean squared error r score 以上四个函数的相同点: 这些函数都有一个参数 multioutput ,用来指定在多目标回归问题中,若干单个目标变量的损失或得分以什么样的方式被平均起来 它的默认值是 uniform average ,他就是将所有预测目标值的损失以等权重的方式平均起来 ...
2017-06-14 15:12 1 16891 推荐指数:
https://www.cnblogs.com/mindy-snail/p/12445973.html 1.confusion_matrix 利用混淆矩阵进行评估 混淆矩阵说白了就是一张表格- 所有正确的预测结果都在对角线上,所以从混淆矩阵中可以很方便直观的看出哪里有错 ...
1.accuracy_score (取值在0-1之间,值越大越好) 理解:分类准确率分数是指所有分类正确的百分比。分类准确率这一衡量分类器的标准比较容易理解,但是它不能告诉你响应值的潜在分布,并且它也不能告诉你分类器犯错的类型。 sklearn形式 ...
在sklearn当中,可以在三个地方进行模型的评估 1:各个模型的均有提供的score方法来进行评估。 这种方法对于每一种学习器来说都是根据学习器本身的特点定制的,不可改变,这种方法比较简单。这种方法受模型的影响, 2:用交叉验证cross_val_score,或者参数调试 ...
1.介绍 有三种不同的方法来评估一个模型的预测质量: estimator的score方法:sklearn中的estimator都具有一个score方法,它提供了一个缺省的评估法则来解决问题。 Scoring参数:使用cross-validation的模型评估工具,依赖于内部 ...
sklearn中的逻辑回归 目录 sklearn中的逻辑回归 1 概述 1.1 名为“回归”的分类器 1.2 为什么需要逻辑回归 1.3 sklearn中的逻辑回归 ...
一、模型验证方法如下: 通过交叉验证得分:model_sleection.cross_val_score(estimator,X) 对每个输入数据点产生交叉验证估计:model_selection.cross_val_predict(estimator,X) 计算并绘制模型的学习率 ...
六、sklearn中的分类性能指标 机器学习中常使用 sklearn 完成对模型分类性能的评估,我们需要掌握使用 sklearn 提供的以下接口: accuracy_score 准确度 precision_score 精准率 recall_score 召回率 ...
一、sklearn中自带的回归算法 1. 算法 来自: https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完的模型在本地保存成.m文件,方法如下: skilearn保存模型 ...