1.accuracy_score
(取值在0-1之間,值越大越好)
理解:分類准確率分數是指所有分類正確的百分比。分類准確率這一衡量分類器的標准比較容易理解,但是它不能告訴你響應值的潛在分布,並且它也不能告訴你分類器犯錯的類型。
sklearn形式:sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
import numpy as np from sklearn.metrics import accuracy_score y_pred = [0, 2, 1, 3] y_true = [0, 1, 2, 3] accuracy_score(y_true, y_pred) 0.5 accuracy_score(y_true, y_pred, normalize=False) 2
2.mean_absolute_error (MAE)
(取值0 - +∞,越小越好)

理解:實際值與預測值的誤差絕對值求平均(一般用在回歸分析中)
sklearn形式:from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error # MSE mse_predict = mean_squared_error(y_test, y_predict) # MAE mae_predict = mean_absolute_error(y_test, y_predict) # y_test:測試數據集中的真實值 # y_predict:根據測試集中的x所預測到的數值
