让我们回到小球检测的栗子,在一元高斯分布下,我们只使用了色相值这一个性质。然而,颜色其实是用多个维度来定义的。比如,在HSV模型下,除了色相值还有饱和度(Saturation)和亮度(Value)。而我们通常使用的三原色光模式(RGB模型)将颜色表示成红色(R)、绿色(G)和蓝色(B)的叠加。如果我们用RGB值来表示一个颜色,怎样表示我们栗子中的小球呢?我们将图片中所有像素点的RGB值用散点图的形式画出来可以得到下面的图:

那我们怎样对这种图形进行建模呢?如这一节的题目所说,我们将一元高斯分布扩展到多元高斯分布并对RGB值进行建模。
让我们首先来介绍多元高斯分布的数学形式吧:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1wJTI4JTVDYm9sZHN5bWJvbCU3QnglN0QlMjkrJTNEKyU1Q2ZyYWMlN0IxJTdEJTdCJTI4MiU1Q3BpJTI5JTVFJTdCRCUyRjIlN0QlN0MlNUNTaWdtYSU3QyU1RSU3QjElMkYyJTdEJTdEJTVDZXhwJTVDJTdCLSU1Q2ZyYWMlN0IxJTdEJTdCMiU3RCUyOCU1Q2JvbGRzeW1ib2wlN0J4JTdELSU1Q2JvbGRzeW1ib2wlNUNtdSUyOSU1RVQlNUNTaWdtYSU1RSU3Qi0xJTdEJTI4JTVDYm9sZHN5bWJvbCU3QnglN0QtJTVDYm9sZHN5bWJvbCU1Q211JTI5JTVDJTdE.png)
多元高斯分布和一元高斯分布是十分相似的,我们用加粗的
来表示变量(一个向量),
表示维度(元的数目),加粗的
表示平均向量,大写的
表示协方差矩阵(Covariance Matrix,是一个方阵),
表示
的行列式值,
表示矩阵
的转置。
值得一提的是协方差矩阵,它由两部分组成,方差(Variance)和相关性(Correlation),对角线上的值表示方差,非对角线上的值表示维度之间的相关性。拿一个二维协方差矩阵作栗子:

其中,对角线上的
和
分别表示变量
和
的独立方差,非对角线上的
表示两个变量之间的相关性(注意
和
是相等的)。
回到小球检测的栗子,我们考虑用RGB来对“红色”小球进行多元高斯分布的建模,那么各个参数就如下图所示了:
我们来看一下标准二元高斯分布图:

2、求解多元高斯分布:最大似然估计
和求解一元高斯分布类似,我们将问题描述为:给定观测值
,求
和
,使得似然函数最大:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNoYXQlN0IlNUNib2xkc3ltYm9sJTVDbXUlN0QlMkMrJTVDaGF0JTdCJTVDU2lnbWElN0QlM0QlNUN0ZXh0JTdCYXJnJTdEJTVDKyU1Q3VuZGVyc2V0JTdCJTVDYm9sZHN5bWJvbCU1Q211JTJDJTVDU2lnbWElN0QlN0IlNUNtYXglN0QlNUMrJTdCcCUyOCU1QyU3QiU1Q2JvbGRzeW1ib2wlN0J4X2klN0QlNUMlN0QlN0MlNUNib2xkc3ltYm9sJTVDbXUlMkMlNUNTaWdtYSUyOSU3RA==.png)
同样,假设观测值两两相互独立,根据独立概率公式,我们有:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNoYXQlN0IlNUNib2xkc3ltYm9sJTVDbXUlN0QlMkMrJTVDaGF0JTdCJTVDU2lnbWElN0QlM0QlNUN0ZXh0JTdCYXJnJTdEJTVDKyU1Q3VuZGVyc2V0JTdCJTVDYm9sZHN5bWJvbCU1Q211JTJDJTVDU2lnbWElN0QlN0IlNUNtYXglN0QlNUMrJTdCJTVDcHJvZF8lN0JpJTNEMSU3RCU1RU4rcCUyOCU1Q2JvbGRzeW1ib2wlN0J4X2klN0QlN0MlNUNib2xkc3ltYm9sJTVDbXUlMkMlNUNTaWdtYSUyOSU3RA==.png)
同样(1)取对数,(2)将多元高斯分布的形式带入,我们有:
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTdEJTBBJTVDaGF0JTdCJTVDYm9sZHN5bWJvbCU1Q211JTdEJTJDKyU1Q2hhdCU3QiU1Q1NpZ21hJTdEJTBBJTI2JTNEKyU1Q3RleHQlN0JhcmclN0QlNUMrJTVDdW5kZXJzZXQlN0IlNUNib2xkc3ltYm9sJTVDbXUlMkMlNUNTaWdtYSU3RCU3QiU1Q21heCU3RCU1QyslNUNsbislNUNwcm9kXyU3QmklM0QxJTdEJTVFTitwJTI4JTVDYm9sZHN5bWJvbCU3QnhfaSU3RCU3QyU1Q2JvbGRzeW1ib2wlNUNtdSUyQyU1Q1NpZ21hJTI5JTVDJTVDJTBBJTI2JTNEKyU1Q3RleHQlN0JhcmclN0QlNUMrJTVDdW5kZXJzZXQlN0IlNUNib2xkc3ltYm9sJTVDbXUlMkMlNUNTaWdtYSU3RCU3QiU1Q21heCU3RCU1QyslNUNzdW1fJTdCaSUzRDElN0QlNUVOKyU1Q2xuK3AlMjglNUNib2xkc3ltYm9sJTdCeF9pJTdEKyU3QyslNUNib2xkc3ltYm9sJTVDbXUlMkMrJTVDU2lnbWElMjkrJTVDJTVDJTBBJTI2JTNEKyU1Q3RleHQlN0JhcmclN0QlNUMrJTVDdW5kZXJzZXQlN0IlNUNib2xkc3ltYm9sJTVDbXUlMkMlNUNTaWdtYSU3RCU3QiU1Q21heCU3RCU1QyslNUNzdW1fJTdCaSUzRDElN0QlNUVOKyUyOCstJTVDZnJhYyU3QjElN0QlN0IyJTdEJTI4JTVDYm9sZHN5bWJvbCU3QnhfaSU3RC0lNUNib2xkc3ltYm9sJTVDbXUlMjklNUVUJTVDU2lnbWElNUUlN0ItMSU3RCUyOCU1Q2JvbGRzeW1ib2wlN0J4X2klN0QtJTVDYm9sZHN5bWJvbCU1Q211JTI5Ky0rJTVDZnJhYyU3QjElN0QlN0IyJTdEJTVDbG4rJTdDJTVDU2lnbWElN0MrLSslNUNmcmFjJTdCRCU3RCU3QjIlN0QlNUNsbislMjgyJTVDcGklMjkrKyUyOSslNUMlNUMlMEElMjYlM0QrJTVDdGV4dCU3QmFyZyU3RCU1QyslNUN1bmRlcnNldCU3QiU1Q2JvbGRzeW1ib2wlNUNtdSUyQyU1Q1NpZ21hJTdEJTdCJTVDbWluJTdEJTVDKyU1Q3N1bV8lN0JpJTNEMSU3RCU1RU4rJTI4KyU1Q2ZyYWMlN0IxJTdEJTdCMiU3RCUyOCU1Q2JvbGRzeW1ib2wlN0J4X2klN0QtJTVDYm9sZHN5bWJvbCU1Q211JTI5JTVFVCU1Q1NpZ21hJTVFJTdCLTElN0QlMjglNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2JvbGRzeW1ib2wlNUNtdSUyOSslMkIrJTVDZnJhYyU3QjElN0QlN0IyJTdEJTVDbG4rJTdDJTVDU2lnbWElN0MrKyUyOSUwQSU1Q2VuZCU3QmFsaWduJTdE.png)
我们给目标函数做个记号,令
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD1KJTI4JTVDYm9sZHN5bWJvbCU1Q211JTJDKyU1Q1NpZ21hJTI5KyUzRCslNUNzdW1fJTdCaSUzRDElN0QlNUVOKyUyOCslNUNmcmFjJTdCMSU3RCU3QjIlN0QlMjglNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2JvbGRzeW1ib2wlNUNtdSUyOSU1RVQlNUNTaWdtYSU1RSU3Qi0xJTdEJTI4JTVDYm9sZHN5bWJvbCU3QnhfaSU3RC0lNUNib2xkc3ltYm9sJTVDbXUlMjkrJTJCKyU1Q2ZyYWMlN0IxJTdEJTdCMiU3RCU1Q2xuKyU3QyU1Q1NpZ21hJTdDKyslMjk=.png)
我们仍然分别对
和
求偏导来计算
和
。(这里需要矩阵求导的知识,可以参考Matrix Calculus Manual)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTdEJTBBJTVDZnJhYyU3QiU1Q3BhcnRpYWwrSiU3RCU3QiU1Q3BhcnRpYWwrJTVDYm9sZHN5bWJvbCU1Q211JTdEJTBBJTI2JTNEKyU1Q2ZyYWMlN0IlNUNwYXJ0aWFsJTdEJTdCJTVDcGFydGlhbCU1Q2JvbGRzeW1ib2wlNUNtdSU3RCU1Q3N1bV8lN0JpJTNEMSU3RCU1RU4lMjglNUNmcmFjJTdCMSU3RCU3QjIlN0QlMjglNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2JvbGRzeW1ib2wlNUNtdSUyOSU1RVQlNUNTaWdtYSU1RSU3Qi0xJTdEJTI4JTVDYm9sZHN5bWJvbCU3QnhfaSU3RC0lNUNib2xkc3ltYm9sJTVDbXUlMjklMkIlNUNmcmFjJTdCMSU3RCU3QjIlN0QlN0MlNUNTaWdtYSU3QyUyOSUwQSU1QyU1QyUyNiUzRCUwQSU1Q2ZyYWMlN0IlNUNwYXJ0aWFsJTdEJTdCJTVDcGFydGlhbCU1Q2JvbGRzeW1ib2wlNUNtdSU3RCU1Q2ZyYWMlN0IxJTdEJTdCMiU3RCU1Q3N1bV8lN0JpJTNEMSU3RCU1RU4lMjglNUNib2xkc3ltYm9sJTdCeF9pJTdEJTVFVCU1Q1NpZ21hJTVFJTdCLTElN0QlNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2JvbGRzeW1ib2wlN0J4X2klN0QlNUVUJTVDU2lnbWElNUUlN0ItMSU3RCU1Q2JvbGRzeW1ib2wlNUNtdS0lNUNib2xkc3ltYm9sJTVDbXUlNUVUJTVDU2lnbWElNUUlN0ItMSU3RCU1Q2JvbGRzeW1ib2wlN0J4X2klN0QlMkIlNUNib2xkc3ltYm9sJTVDbXUlNUVUJTVDU2lnbWElNUUlN0ItMSU3RCU1Q2JvbGRzeW1ib2wlNUNtdSUyOSUwQSU1QyU1QyUyNiUzRCUwQSU1Q2ZyYWMlN0IlNUNwYXJ0aWFsJTdEJTdCJTVDcGFydGlhbCU1Q211JTdEJTVDc3VtXyU3QmklM0QxJTdEJTVFTiUyOCU1Q2ZyYWMlN0IxJTdEJTdCMiU3RCU1Q2JvbGRzeW1ib2wlNUNtdSU1RVQlNUNTaWdtYSU1RSU3Qi0xJTdEJTVDYm9sZHN5bWJvbCU1Q211LSU1Q2JvbGRzeW1ib2wlNUNtdSU1Q1NpZ21hJTVFJTdCLTElN0QlNUNib2xkc3ltYm9sJTdCeF9pJTdEJTI5JTBBJTVDJTVDJTI2JTNEJTBBJTVDU2lnbWElNUUlN0ItMSU3RCU1Q3N1bV8lN0JpJTNEMSU3RCU1RU4lMjglNUNib2xkc3ltYm9sJTVDbXUtJTVDYm9sZHN5bWJvbCU3QnhfaSU3RCUyOSUwQSU1QyU1QyUyNiUzRCUwQSU1Q2JvbGRzeW1ib2wlN0IwJTdEJTBBJTVDZW5kJTdCYWxpZ24lN0Q=.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNiZWdpbiU3QmFsaWduJTdEJTBBJTVDZnJhYyU3QiU1Q3BhcnRpYWwrSiU3RCU3QiU1Q3BhcnRpYWwlNUNTaWdtYSU3RCUwQSUyNiUzRCU1Q2ZyYWMlN0IlNUNwYXJ0aWFsJTdEJTdCJTVDcGFydGlhbCU1Q1NpZ21hJTdEJTVDc3VtXyU3QmklM0QxJTdEJTVFTiUyOCU1Q2ZyYWMlN0IxJTdEJTdCMiU3RCUyOCU1Q2JvbGRzeW1ib2wlN0J4X2klN0QtJTVDaGF0JTdCJTVDYm9sZHN5bWJvbCU1Q211JTdEJTI5JTVFVCU1Q1NpZ21hJTVFJTdCLTElN0QlMjglNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2hhdCU3QiU1Q2JvbGRzeW1ib2wlNUNtdSU3RCUyOSUyQiU1Q2ZyYWMlN0IxJTdEJTdCMiU3RCU1Q2xuJTdDJTVDU2lnbWElN0MlMjklMEElNUMlNUMlMjYlM0QlMEElNUNmcmFjJTdCMSU3RCU3QjIlN0QlNUNzdW1fJTdCaSUzRDElN0QlNUVOJTI4LSU1Q1NpZ21hJTVFJTdCLTElN0QlMjglNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2hhdCU3QiU1Q2JvbGRzeW1ib2wlNUNtdSU3RCUyOSUyOCU1Q2JvbGRzeW1ib2wlN0J4X2klN0QtJTVDaGF0JTdCJTVDYm9sZHN5bWJvbCU1Q211JTdEJTI5JTVFVCU1Q1NpZ21hJTVFJTdCLTElN0QlMkIlNUNTaWdtYSU1RSU3Qi0xJTdEJTI5JTBBJTVDJTVDJTI2JTNEJTBBJTVDZnJhYyU3QjElN0QlN0IyJTdEJTVDU2lnbWElNUUlN0ItMSU3RCUyOC0lMjglNUNzdW1fJTdCaSUzRDElN0QlNUVOJTI4JTVDYm9sZHN5bWJvbCU3QnhfaSU3RC0lNUNoYXQlN0IlNUNib2xkc3ltYm9sJTVDbXUlN0QlMjklMjglNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2hhdCU3QiU1Q2JvbGRzeW1ib2wlNUNtdSU3RCUyOSU1RVQlMjklNUNTaWdtYSU1RSU3Qi0xJTdEJTJCTiU1Q2JvbGRzeW1ib2wlN0JJJTdEJTI5JTBBJTVDJTVDJTI2JTNEJTBBJTVDYm9sZHN5bWJvbCU3QjAlN0QlMEElNUNlbmQlN0JhbGlnbiU3RA==.png)
求得,
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNoYXQlN0IlNUNib2xkc3ltYm9sJTVDbXUlN0QlM0QlNUNmcmFjJTdCMSU3RCU3Qk4lN0QlNUNzdW1fJTdCaSUzRDElN0QlNUVOJTVDYm9sZHN5bWJvbCU3QnhfaSU3RA==.png)
![[公式]](/image/aHR0cHM6Ly93d3cuemhpaHUuY29tL2VxdWF0aW9uP3RleD0lNUNoYXQlNUNTaWdtYSUzRCU1Q2ZyYWMlN0IxJTdEJTdCTiU3RCU1Q3N1bV8lN0JpJTNEMSU3RCU1RU4lMjglNUNib2xkc3ltYm9sJTdCeF9pJTdELSU1Q2hhdCU3QiU1Q2JvbGRzeW1ib2wlNUNtdSU3RCUyOSUyOCU1Q2JvbGRzeW1ib2wlN0J4X2klN0QtJTVDaGF0JTdCJTVDYm9sZHN5bWJvbCU1Q211JTdEJTI5JTVFVA==.png)
