论文中的一些符号 O(big-Oh) Ω(big-omega) Θ(big-theta)


O(big-Oh):

描述算法时间复杂度用的最普遍的符号。它是渐进上界,其作用是将我们得到的算法在最坏情况下(worst case)时间复杂度表达式简化成对应的多项式(比如n^2等)。所以在我们证明的过程中,目的是证明我们的式子要“小于等于”目标多项式。

Ω(big-Omega):

这个符号我们一般用的比较少,一个是因为我们一般不会去考虑算法运行时间的下界,另一个是因为下界时间也不好证明。没错,他就是渐进下界,其作用是将我们得到的算法在最好情况下(best case)时间复杂度表达式简化成对应的多项式(也比如n^2等)。所以在我们证明的过程中,目的是证明我们的式子要“大于等于”目标多项式。

Θ(big-theta):

如果O和Ω可以用同一个多项式表示,那么这个多项式就是我们所要求的渐进紧的界了。其作用是将我们可以较准确地得到算法的时间复杂度表达式对应的多项式(也比如n^2等)。所以在我们证明的过程中,目的是证明我们的式子要“等于”目标多项式。

Family of Bachmann–Landau notations

参考:


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM