深度学习: 学习率 (learning rate)


 

Introduction

学习率 (learning rate),控制 模型的 学习进度 : 

lr 即 stride (步长) ,即反向传播算法中的 ηη :

ωn←ωn−η∂L∂ωnωn←ωn−η∂L∂ωn

 

 学习率大小

  学习率 大 学习率 小
学习速度
使用时间点 刚开始训练时 一定轮数过后
副作用 1.易损失值爆炸;2.易振荡。 1.易过拟合;2.收敛速度慢。

 

学习率设置

在训练过程中,一般根据训练轮数设置动态变化的学习率

  • 刚开始训练时:学习率以 0.01 ~ 0.001 为宜。
  • 一定轮数过后:逐渐减缓。
  • 接近训练结束:学习速率的衰减应该在100倍以上。

 Note: 
如果是 迁移学习 ,由于模型已在原始数据上收敛,此时应设置较小学习率 (≤10−4≤10−4) 在新数据上进行 微调 。

 

把脉 目标函数损失值 曲线

理想情况下 曲线 应该是 滑梯式下降 [绿线]: 


 1. 曲线 初始时 上扬 [红线]: Solution:初始 学习率过大 导致 振荡,应减小学习率,并 从头 开始训练 。
 2. 曲线 初始时 强势下降 没多久 归于水平 [紫线]: 
Solution:后期 学习率过大 导致 无法拟合,应减小学习率,并 重新训练 后几轮 。

  3. 曲线 全程缓慢 [黄线]:  Solution:初始 学习率过小 导致 收敛慢,应增大学习率,并从头 开始训练。

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM