时间序列:R语言ARMA-GARCH模型


ARMA:

#读入数据,并绘制时序图

d<-read.table("C:/Users/haha/Desktop/R/zuoye/1.txt")

x<-ts(log(d),start = 1)

 

1: x的时间序列图:

x<-ts(log(d),start = 1)

plot(x)

 

2:

 

从上图可以看出x.dif序列值在0的附近波动,没有存在显著地波动起伏大的情况,基本为平稳特征.

 

3.x.dif序列adf单位根检验:

 

从x.difadf单位根检验p=0.01小于显著水平a=0.05,故拒绝原假设,所有x.dif是平稳序列.

 

4.

 

 

从上图可以看出x.difACFPACF是均显示不截尾的性质PACFlag12,14; ACFlag:4,12 2倍标准差外),故认为可以尝试使用模型ARMA(1,1)

 

5: 系统自动定阶:

为避免错估模型采用,auto.arima自动定价模型

 

 定阶模型是ARIMA1,1,1),其中p=1,d=1,q=1

也就是d=1是需要一阶差分后,序列才平稳,然后对它进行自回归模型是ARMA(1,1).既最后得到模型为x.dif序列的ARMA(1,1)模型

 

6:

 

 

7: 进行白噪声检验:

 

 

8:

 

 

 

GARCH

ARCH效应检验的两种方法:

LM检验(拉格朗日检验)

 

拟合garch(1,1):

 

 


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM