R语言实现多线性回归模型预测时间序列数据 MLR models in R


<!-- #此文主要针对统计基础比较薄弱(比如博主)利用多个模型言针对时间序列数据做预测用之MLR/多线性回归模型; -->
<!--定义:人话就是给定一组数据集data={(x1,y1),(x2,y2)....(xn,yn)} 从data中得到一个线性模型来反映 x和y 的关系,f(x)=W1X1+W2x2+w3x3+b->f(x)=Wt*x+b :w=不同的参数 -->
通常测量误差用欧式误差距离/最小二乘法: (f(x)-y)^2 ---y是ground truth 也就是实际值,f(x)为cross validation 预测值
今天不想写了,明天写.....


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM