数学函数最小值为什么可以通过导数=0来求出呢?


1、导数的全称是导函数,由于我们过于喜欢简称,把导数的值也称为导数

2、导函数的几何意义是计算曲线上任意一点的斜率 tangent、slope、
      gradient,而水平的切线的斜率是0。

3、  有极大值 maxima,或极小值 minima 的地方的斜率是0,水平
      直线的斜率也是0,所以斜率为0是有极值或最值的必要条件 necessity。

4、单单有导数为0,还不足以推论是极大值点,还是极小值点。但是我们
      太多的教师,常常误导学生,尤其是到了大二左右的多元函数微积分时,
      很多教授依然用必要条件去误导学生讨论极值点、计算多元函数的极值。

      对于一元函数,我们还需要计算二阶导数,才有充分性 sufficiency。
      两者合在一起才是充要条件 = Necessary and sufficient conditions。

      平时我们简称的“当且仅当”就是这个意思,Iff = if and only if。


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM