pytorch learning rate decay


关于learning rate decay的问题,pytorch 0.2以上的版本已经提供了torch.optim.lr_scheduler的一些函数来解决这个问题。

我在迭代的时候使用的是下面的方法。

classtorch.optim.lr_scheduler.MultiStepLR(optimizermilestonesgamma=0.1last_epoch=-1)

>>> # Assuming optimizer uses lr = 0.05 for all groups >>> # lr = 0.05 if epoch < 30 >>> # lr = 0.005 if 30 <= epoch < 80 >>> # lr = 0.0005 if epoch >= 80 >>> scheduler = MultiStepLR(optimizer, milestones=[30,80], gamma=0.1) >>> for epoch in range(100): >>> scheduler.step() >>> train(...) >>> validate(...)
使用的时候check一下pytorch的版本,如果提示没有lr_scheduler don't find 尝试用
from torch.optim import lr_scheduler 导入
具体的训练代码见 https://www.cnblogs.com/z1141000271/p/9394738.html


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM