原根的存在性及个数证明(Primitive Root Theorem)


我在RSA学习总结的第三部分关于Mille-Rabin素数测试的正确性证明里需要用到此定理,由于证明太长,故另开一章于此。(为啥我说话突然文绉绉了Orz,可能是这周辩论打多了)

结论是对素数p,modulo p的原根存在,个数为与ø(p-1),modulo p2的原根个数为(p-1)ø(p-1)个

对奇素数p,modulo p^n的原根存在,个数为pn-2(p-1)ø(p-1) (n>=3)

首先证明对任意素数p,modulo p的原根存在

以下是证明思路(符号的意思在第二张图,完整证明里有)

知道了modulo p^2下Primitive root存在后可以推广至p^n


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM