什么时候单点集也可以是开集?


什么时候单点集也可以是开集?答案是,相对而言的时候!举一个简单的例子,我们知道,在标准度量下,$(0,1)$在$\mathbb{R}$上是开集,但是放在$\mathbb{R}^2$的框架中看,$(0,1)$既不是开集又不是闭集.可见,当我们谈论开集和闭集的时候,总要考虑是在什么框架下思考的.比如,在标准度量下,$\{x_0\}$在$\mathbb{R}$的框架下看是闭集,但是在$\{x_0\}$的框架下看$\{x_0\}$就既是一个开集又是一个闭集,因为此时没有边界点!


免责声明!

本站转载的文章为个人学习借鉴使用,本站对版权不负任何法律责任。如果侵犯了您的隐私权益,请联系本站邮箱yoyou2525@163.com删除。



 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM