RBF網絡能夠逼近任意的非線性函數,可以處理系統內的難以解析的規律性,具有良好的泛化能力,並有很快的學習收斂速度,已成功應用於非線性函數逼近、時間序列分析、數據分類、模式識別、信息處理、圖像處理、系統 ...
RBF網絡能夠逼近任意的非線性函數,可以處理系統內的難以解析的規律性,具有良好的泛化能力,並有很快的學習收斂速度,已成功應用於非線性函數逼近、時間序列分析、數據分類、模式識別、信息處理、圖像處理、系統 ...
本文給出兩種相關系數,系數越大說明越相關。你可能會參考另一篇博客獨立性檢驗。 皮爾森相關系數 皮爾森相關系數(Pearson correlation coefficient)也叫皮爾森積差相關系數 ...
本文就高斯混合模型(GMM,Gaussian Mixture Model)參數如何確立這個問題,詳細講解期望最大化(EM,Expectation Maximization)算法的實施過程。 單高斯分 ...
RNN 中文分詞、詞性標注、命名實體識別、機器翻譯、語音識別都屬於序列挖掘的范疇。序列挖掘的特點就是某一步的輸出不僅依賴於這一步的輸入,還依賴於其他步的輸入或輸出。在序列挖掘領域傳統的機器學習方法 ...
人生如戲!!!! 一、理論准備 聚類算法,不是分類算法。分類算法是給一個數據,然后判斷這個數據屬於已分好的類中的具體哪一類。聚類算法是給一大堆原始數據,然后通過算法將其中具 ...
一、准確率(Precision)和召回率(Recall) (令R(u)是根據用戶在訓練集上的行為給用戶作出的推薦列表,而T(u)是用戶在測試集上的行為列表。) 對用戶u推薦N個物品 ...
Collaborative Filtering Recommendation 向量之間的相似度 度量向量之間的相似度方法很多了,你可以用距離(各種距離)的倒數,向量夾角,Pearson相關系數等。 ...
分類回歸樹(CART,Classification And Regression Tree)也屬於一種決策樹,上回文我們介紹了基於ID3算法的決策樹。作為上篇,這里只介紹CART是怎樣用於分類的。 ...
C4.5決策樹在ID3決策樹的基礎之上稍作改進,請先閱讀ID3決策樹。 C4.5克服了ID3的2個缺點: 1.用信息增益選擇屬性時偏向於選擇分枝比較多的屬性值,即取值多的屬性 2.不能處理連貫屬 ...
簡單理解SimRank 圖1.二部圖 所謂二部圖(bipartite graphs),是指圖中的節點可以分這兩個子集,任意一條邊關聯的兩個節點分別來自於這兩個子集。用I(v)和O(v)分別表示 ...