文章目錄概述一、利用torchstat 1.1 方法 1.2 代碼 1.3 輸出二、利用ptflops 2.1 方法 2.2 代碼 2.3 輸出三、利用thop 3.1 方法 3.2 代碼 3.3 輸出概述 Params:是指網絡模型中需要訓練的參數總數,理解為參數量 ...
其實模型的參數量好算,但浮點運算數並不好確定,我們一般也就根據參數量直接估計計算量了。但是像卷積之類的運算,它的參數量比較小,但是運算量非常大,它是一種計算密集型的操作。反觀全連接結構,它的參數量非常多,但運算量並沒有顯得那么大。 FLOPs Floating point Operations :浮點運算次數,理解為計算量,可以用來衡量算法的復雜度。一個乘法或一個加法都是一個FLOPs FLOPS ...
2022-09-08 14:02 0 2530 推薦指數:
文章目錄概述一、利用torchstat 1.1 方法 1.2 代碼 1.3 輸出二、利用ptflops 2.1 方法 2.2 代碼 2.3 輸出三、利用thop 3.1 方法 3.2 代碼 3.3 輸出概述 Params:是指網絡模型中需要訓練的參數總數,理解為參數量 ...
神經網絡模型的訓練過程其實質上就是神經網絡參數的設置過程 在神經網絡優化算法中最常用的方法是反向傳播算法,下圖是反向傳播算法流程圖: 從上圖可知,反向傳播算法實現了一個迭代的過程,在每次迭代的開始,先需要選取一小部分訓練數據,這一小部分數據叫做一個batch。然后這一個batch會通過前 ...
自己搭建神經網絡時,一般都采用已有的網絡模型,在其基礎上進行修改。從2012年的AlexNet出現,如今已經出現許多優秀的網絡模型,如下圖所示。 主要有三個發展方向: Deeper:網絡層數更深,代表網絡VggNet Module: 采用模塊化的網絡結構(Inception ...
代碼 KBGAT 模型 圖注意力網絡(GAT) ...
實驗目的 學會使用SPSS的簡單操作,掌握神經網絡模型。 實驗要求 使用SPSS。 實驗內容 (1)創建多層感知器網絡,使用多層感知器評估信用風險,銀行信貸員需要能夠找到預示有可能拖欠貸款的人的特征來識別信用風險的高低。 (2)實現神經網絡預測模型,使用徑向基函數 ...
神經網絡模型拆分 Distributed Machine Learning Federated Learning 針對神經網絡的模型並行方法有:橫向按層划分、縱向跨層划分和模型隨機划分 橫向按層 ...
深度學習最近火的不行,因為在某些領域應用的效果確實很好,深度學習本質上就是機器學習的一個topic,是深度人工神經網絡的另一種叫法,因此理解深度學習首先要理解人工神經網絡。 1、人工神經網絡 人工神經網絡又叫神經網絡,是借鑒了生物神經網絡的工作原理形成的一種數學模型。下面是一張生物神經元的圖示 ...
(一)神經網絡簡介 主要是利用計算機的計算能力,對大量的樣本進行擬合,最終得到一個我們想要的結果,結果通過0-1編碼,這樣就OK啦 (二)人工神經網絡模型 一、基本單元的三個基本要素 1、一組連接(輸入),上面含有連接強度(權值)。 2、一個求和單元 3、一個非線性 ...