原文:循環神經網絡---GRU模型

一 GRU介紹 GRU是LSTM網絡的一種效果很好的變體,它較LSTM網絡的結構更加簡單,而且效果也很好,因此也是當前非常流形的一種網絡。GRU既然是LSTM的變體,因此也是可以解決RNN網絡中的長依賴問題。 GRU的參數較少,因此訓練速度更快,GRU能夠降低過擬合的風險。 在LSTM中引入了三個門函數:輸入門 遺忘門和輸出門來控制輸入值 記憶值和輸出值。而在GRU模型中只有兩個門:分別是更新門和 ...

2021-10-28 15:03 0 6322 推薦指數:

查看詳情

循環神經網絡之LSTM和GRU

什么。 But! 我覺得邱錫鵬老師的書寫得更好!我又要開始推薦這本免費的書了:《神經網絡與深度學習》。這本書第六章循環神 ...

Mon Apr 15 06:33:00 CST 2019 0 2570
GRU神經網絡

1、GRU概述   GRU是LSTM網絡的一種效果很好的變體,它較LSTM網絡的結構更加簡單,而且效果也很好,因此也是當前非常流形的一種網絡GRU既然是LSTM的變體,因此也是可以解決RNN網絡中的長依賴問題。   在LSTM中引入了三個門函數:輸入門、遺忘門 ...

Mon Nov 04 17:09:00 CST 2019 0 772
循環神經網絡之——門控制循環單元(GRU)

一. 摘要 在上次分享中,我們了解到了基礎的循環神經網絡(RNN),對於基礎的循環神經網絡模型,它可以比較好的通過t時刻關聯到t-1時刻和t+1時刻,甚至更多。但它對任意時刻的輸入都是賦予相同權重計算。這樣區分不出重點因素。並且循環神經網絡的梯度很容易衰減和爆炸,雖然可以采用裁剪梯度的方法緩解 ...

Tue Jan 25 23:18:00 CST 2022 0 801
機器學習(ML)九之GRU、LSTM、深度神經網絡、雙向循環神經網絡

門控循環單元(GRU循環神經網絡中的梯度計算方法。當時間步數較大或者時間步較小時,循環神經網絡的梯度較容易出現衰減或爆炸。雖然裁剪梯度可以應對梯度爆炸,但無法解決梯度衰減的問題。通常由於這個原因,循環神經網絡在實際中較難捕捉時間序列中時間步距離較大的依賴關系。 門控循環神經網絡(gated ...

Sun Feb 16 04:08:00 CST 2020 0 2028
循環神經網絡---LSTM模型

補充: 常見的激活函數:https://blog.csdn.net/tyhj_sf/article/details/79932893 常見的損失函數:https://blog.csdn.net/g ...

Wed Oct 27 19:28:00 CST 2021 0 1695
深度學習四:從循環神經網絡入手學習LSTM及GRU

循環神經網絡 簡介 循環神經網絡(Recurrent Neural Networks, RNN) 是一類用於處理序列數據的神經網絡。之前的說的卷積神經網絡是專門用於處理網格化數據(例如一個圖像)的神經網絡,而循環神經網絡專門用於處理序列數據(例如\(x^{(1)},x^{(2)},···,x ...

Sat Oct 24 22:08:00 CST 2020 0 916
序列模型(5)-----雙向神經網絡(BRNN)和深層循環神經網絡(Deep RNN)

一、雙向循環神經網絡BRNN 采用BRNN原因: 雙向RNN,即可以從過去的時間點獲取記憶,又可以從未來的時間點獲取信息。為什么要獲取未來的信息呢? 判斷下面句子中Teddy是否是人名,如果只從前面兩個詞是無法得知Teddy是否是人名,如果能有后面的信息就很好判斷了,這就需要用的雙向循環 ...

Wed Dec 05 04:14:00 CST 2018 0 2713
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM