如果你要做一個計算機視覺應用,相比於從頭訓練權重,或者說從隨機初始化權重開始,如果你下載別人已經訓練好的網絡結構的權重,那么你的進展會相當快。用這個預訓練,然后轉換到你感興趣的任務上。 假如說你要建立一個貓的檢測器,用來檢測你自己的寵物貓,我們這里分類3個類別 ...
Part 視頻學習心得及問題總結 通過對視頻的學習,了解了卷積神經網絡整體的內容和一些思想,卷積神經網絡主要包括卷積,池化,激活函數,損失函數等部分,通過不同的卷積核對數據進行不同的提取,池化對提取的數據進行收縮,減小數據的規模,可能是之前的視頻學習沒看明白,不太理解激活的函數的作用,最后進行損失函數的分析,又反過來修改卷積核等參數,如此不斷進行,使預測更加准確。 主要的問題就是不太理解激活函數。 ...
2021-10-17 13:01 0 104 推薦指數:
如果你要做一個計算機視覺應用,相比於從頭訓練權重,或者說從隨機初始化權重開始,如果你下載別人已經訓練好的網絡結構的權重,那么你的進展會相當快。用這個預訓練,然后轉換到你感興趣的任務上。 假如說你要建立一個貓的檢測器,用來檢測你自己的寵物貓,我們這里分類3個類別 ...
摘要: 1.算法概述 2.算法要點與推導 3.算法特性及優缺點 4.注意事項 5.實現和具體例子 6.適用場合 內容: 1.算法概述: 卷積神經網絡(Convolutional Neural Network,CNN)最開始是為了解決圖像識別問題被設計 ...
,結點,單元,像素點,patch 局部感受野的大小 = 濾波器的大小 1、 引入 在人工神經網絡 ...
完整代碼及其數據,請移步小編的GitHub地址 傳送門:請點擊我 如果點擊有誤:https://github.com/LeBron-Jian/DeepLearningNote 這里結合網絡的資料和DenseNet論文,捋一遍DenseNet,基本代碼和圖片都是來自網絡 ...
目錄 人工神經網絡VS卷積神經網絡 卷積神經網絡CNN 卷積層 參數及結構 卷積輸出值的計算 步長 外圍補充與多Filter 總結輸出大小 卷積網絡API ...
1.卷積操作實質: 輸入圖像(input volume),在深度方向上由很多slice組成,對於其中一個slice,可以對應很多神經元,神經元的weight表現為卷積核的形式,即一個方形的濾波器(filter)(如3X3),這些神經元各自分別對應圖像中的某一個局部區域(local ...
傳統神經網絡: 是全連接形式,即樣本的每個特征屬性都通過所有的隱藏層節點映射,最后輸出數據。由於是全連接,所以計算極為復雜,且模型不易學習。 卷積神經網絡:卷積神經網絡(Convolutional Neural Networks, CNN), CNN可以有效的降低反饋神經網絡(傳統神經網絡 ...
卷積神經網絡CNN-學習1 十年磨一劍,霜刃未曾試。 簡介:卷積神經網絡CNN學習。 CNN中文視頻學習鏈接:卷積神經網絡工作原理視頻-中文版 CNN英語原文學習鏈接:卷積神經網絡工作原理視頻-英文版 一、定義 卷積神經網絡 ...