原文:擬合

擬合是已知點列,從整體上靠近它們,不要求曲線經過每個樣本點,但要保證誤差足夠小 已知一組數據,尋求一個y f x ,使f x 在某種准則下與所有數據點最為接近 擬合的准則是使yi與f xi 的距離的平方和最小,稱為最小二乘准則 若函數對參數線性 參數僅以一次方形式出現,且不能乘以或除以其他任何參數,並不能出現參數的復合函數形式 ,則可以用擬合優度來衡量擬合的好壞,其值越接近於 ,說明擬合的越好 ...

2021-10-11 20:41 0 215 推薦指數:

查看詳情

擬合

一、定義 與插值問題不同,在擬合問題中不需要曲線一定經過給定的點。擬合問題的目標是尋求一個函數(曲線),使得該曲線在某種准則下與所有的數據點最為接近,即曲線擬合的最好(最小化損失函數)。 二、評價擬合的好壞 注:線性函數指的是對參數為線性 三、MATLAB中擬合工具箱的使用 1. ...

Sat Nov 06 19:32:00 CST 2021 0 769
擬合和過擬合

  機器學習是利用模型在訓練集中進行學習,在測試集中對樣本進行預測。模型對訓練集數據的誤差稱為經驗誤差,對測試集數據的誤差稱為泛化誤差。模型對訓練集以外樣本的預測能力稱為模型的泛化能力。   欠擬合(underfitting)和過擬合(overfitting)是模型泛化能力不高的兩種常見原因 ...

Tue Nov 16 01:26:00 CST 2021 0 110
擬合、過擬合

擬合、欠擬合以及解決方法 訓練誤差和泛化誤差 在機器學習中,我們將數據分為訓練數據、測試數據(或者訓練數據、驗證數據、測試數據,驗證數據也是訓練數據的一部分。)訓練誤差是模型在訓練數據集上表現出來的誤差,泛化誤差(也可稱為測試誤差)是在測試數據集上表現出來的誤差的期望。,例如線性回歸用到 ...

Sun Feb 16 07:23:00 CST 2020 0 195
擬合與欠擬合

擬合與欠擬合 目錄 一、 過擬合(overfitting)與欠擬合(underfitting) 2 1. 過擬合 3 2. 欠擬合(高偏差) 3 3. 偏差(Bias) 3 4. 方差(Variance ...

Fri Jul 20 06:51:00 CST 2018 1 4676
擬合和欠擬合

本文首發自公眾號:RAIS ​前言 本系列文章為 《Deep Learning》 讀書筆記,可以參看原書一起閱讀,效果更佳。 構建復雜的機器學習算法 上一篇文章中我們介紹了什么叫做機 ...

Wed Apr 01 14:30:00 CST 2020 0 659
擬合和欠擬合

一、從機器學習分析兩者的關系   機器學習的基本問題:利用模型對數據進行擬合,學習的目的並非是對有限訓練集進行正確預測,而是對未曾在訓練集合出現的樣本能夠正確預測。   模型對訓練集數據的誤差稱為經驗誤差,對測試集數據的誤差稱為泛化誤差。   模型對訓練集以外樣本的預測能力就稱為模型的泛化 ...

Wed Sep 01 19:10:00 CST 2021 0 166
擬合與欠擬合

1 過擬合 1.1 過擬合的定義 當學習器把訓練樣本學的太好了的時候,很可能已經把訓練樣本自身的一些特點當作了所有潛在樣本都會具有的一般性質,這樣就會導致泛化性能下降,這種現象成為過擬合 具體表現就是最終模型在訓練集上效果好,在測試集上效果差。模型泛化能力弱。 1.2 過擬合的原因 ...

Wed Sep 22 17:08:00 CST 2021 0 100
擬合與過擬合概念

擬合與過擬合概念 欠擬合與過擬合概念 圖3-1 欠擬合與過擬合概念演示 通常,你選擇讓交給學習算法處理的特征的方式對算法的工作過程有很大影響。如圖3-1中左圖所示,采用了y = θ0 + θ1x的假設來建立模型,我們發現較少的特征並不能很好的擬合數據,這種情況稱之為欠擬合 ...

Mon Nov 05 00:21:00 CST 2018 0 2468
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM