原文:用LSTM進行時間序列預測

LSTM long short term memory 長短期記憶網絡是一種比較老的處理NLP的模型,但是其在時間序列預測方面的精度還是不錯的,我這里以用 流量 數據為例進行時間序列預測。作者使用的是pytorch框架,在jupyter lab環境下運行。 導入必要的包 加載數據集 輸出的結果如下: ds表示時間戳,y是每個時間段對應的流量值。為了看的更方便,將ds轉換為標准格式 結果如下: 划分 ...

2021-09-01 13:14 0 385 推薦指數:

查看詳情

簡單粗暴LSTMLSTM進行時間序列預測

簡單粗暴LSTM LSTM進行時間序列預測 示例數據下載 點擊此處或者:百度雲鏈接:https://pan.baidu.com/s/1jIAVEVkcpD2o3pUOfstthQ提取碼:1qn2此數據是1949 到 1960 一共 12 年,每年 12 個月的航班乘客數據,一共 144 個數 ...

Mon Feb 01 01:17:00 CST 2021 1 1441
LSTM:在Python中使用PyTorch使用LSTM進行時間序列預測

原文鏈接: https://stackabuse.com/time-series-prediction-using-lstm-with-pytorch-in-python/ 時間序列數據,顧名思義是一種隨時間變化的數據類型。例如,24小時時間段內的溫度,一個月內各種產品的價格,一個特定 ...

Fri May 28 01:35:00 CST 2021 0 9092
Python代寫利用LSTM模型進行時間序列預測分析 - 預測愛爾蘭的電力消耗

原文鏈接:http://tecdat.cn/?p=6663 此示例中,神經網絡用於使用2011年4月至2013年2月期間的數據預測都柏林市議會公民辦公室的能源消耗。 每日數據是通過總計每天提供的15分鍾間隔的消耗量來創建的。 LSTM簡介 LSTM(或長期短期存儲器網絡)允許分析具有長期 ...

Sat May 25 01:51:00 CST 2019 0 567
Python中利用LSTM模型進行時間序列預測分析

時間序列模型 時間序列預測分析就是利用過去一段時間內某事件時間的特征來預測未來一段時間內該事件的特征。這是一類相對比較復雜的預測建模問題,和回歸分析模型的預測不同,時間序列模型是依賴於事件發生的先后順序的,同樣大小的值改變順序后輸入模型產生的結果是不同的。 舉個栗子:根據過去兩年某股票的每天 ...

Tue Aug 23 21:06:00 CST 2016 48 169812
深度學習筆記(一) tf.keras 構建lstm神經網絡進行時間序列預測

  簡介:長短期記憶人工神經網絡(Long-Short Term Memory, LSTM)是一種時間遞歸神經網絡(RNN),論文首次發表於1997年。由於獨特的設計結構,LSTM適合於處理和預測時間序列中間隔和延遲非常長的重要事件。   目的:學會使用tf.keras構建lstm神經網絡進行 ...

Sun Mar 07 01:15:00 CST 2021 0 1149
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM