1. 四種情況 Precision精確率, Recall召回率,是二分類問題常用的評價指標。混淆矩陣如下: T和F代表True和False,是形容詞,代表預測是否正確。 P和N代表Positive和Negative,是預測結果。 預測結果為陽性 ...
評價指標 目錄 評價指標 交並比 IOU 混淆矩陣 Confusion Matrix 准確率 Acc 公式 特點 精准率 Precision 公式 特點 召回率 Recall 公式 特點 精准率 VS 召回率 關注點不同 相互矛盾 Precision recall 曲線 F Score 公式 特點 Average Precision AP mean Average Precision mAP 公式 ...
2021-08-26 17:22 0 219 推薦指數:
1. 四種情況 Precision精確率, Recall召回率,是二分類問題常用的評價指標。混淆矩陣如下: T和F代表True和False,是形容詞,代表預測是否正確。 P和N代表Positive和Negative,是預測結果。 預測結果為陽性 ...
在處理深度學習分類問題時,會用到一些評價指標,如accuracy(准確率)等。剛開始接觸時會感覺有點多有點繞,不太好理解。本文寫出我的理解,同時以語音喚醒(喚醒詞識別)來舉例,希望能加深理解這些指標。 1,TP / FP / TN / FN 下表表示為一個二分類的混淆矩陣(多分 ...
1.目標檢測 目標檢測(Object Detection)的任務是找出圖像中所有感興趣的目標,並確定它們的類別和位置。 目標檢測的位置信息一般由兩種格式(以圖片左上角為原點(0,0)): 1、極坐標 ...
機器學習度量指標 分類評估指標 TN TP FN FP TP:預測為正向(P),實際上預測正確( ...
作者:無影隨想 時間:2016年3月。 出處:https://zhaokv.com/machine_learning/2016/03/ml-metric.html聲明:版權所有,轉載請注明出處 在使用機器學習算法的過程中,針對不同場景需要不同的評價指標,在這里對常用的指標進行一個簡單的匯總 ...
機器學習中的評價指標--01 在機器學習中,性能指標(Metrics)是衡量一個模型好壞的關鍵,通過衡量模型輸出y_predict 和 y_true之間的某種"距離"得出的。 性能指標往往是我們做模型時的最終目標,如准確率,召回率,敏感度等等,但是性能指標常常因為不可微分,無法作為優化 ...
//2019.08.14#機器學習算法評價分類結果1、機器學習算法的評價指標一般有很多種,對於回歸問題一般有MAE,MSE,AMSE等指標,而對於分類算法的評價指標則更多:准確度score,混淆矩陣、精准率、召回率以及ROC曲線、PR曲線等。2、對於分類算法只用准確率的評價指標是不夠 ...