作者:凌逆戰 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看這兩個函數之前,我們需要先了解一維卷積(conv1d)和二維卷積(conv2d),二維卷積是將一個特征圖在width和height兩個方向進行滑動窗口操作,對應 ...
一 前言 空間不變性:我們使用的無論哪種方法都應該和物體的位置無關 局部性:神經網絡的底層應該只探索輸入圖像中的局部區域,而不考慮圖像遠處區域的內容,這就是 局部性 原則 平移不變性:不管出現在圖像中的哪個位置,神經網絡的底層應該對相同的圖像區域做類似的相應 卷積神經網絡 convolutional neural network :是含有卷積層 convolutional layer 的神經網絡 ...
2021-08-03 20:58 0 118 推薦指數:
作者:凌逆戰 地址:https://www.cnblogs.com/LXP-Never/p/10763804.html 在看這兩個函數之前,我們需要先了解一維卷積(conv1d)和二維卷積(conv2d),二維卷積是將一個特征圖在width和height兩個方向進行滑動窗口操作,對應 ...
一維卷積只在一個維度上進行卷積操作,而二維卷積會在二個維度上同時進行卷積操作。 轉載自:https://www.cnblogs.com/LXP-Never/p/10763804.html 一維卷積:tf.layers.conv1d() 一維卷積常用於序列數據,如自然語言處理領域 ...
由於計算機視覺的大紅大紫,二維卷積的用處范圍最廣。因此本文首先介紹二維卷積,之后再介紹一維卷積與三維卷積的具體流程,並描述其各自的具體應用。 1. 二維卷積 圖中的輸入的數據維度為14×14">14×1414×14,過濾器大小為5× ...
作者:szx_spark 由於計算機視覺的大紅大紫,二維卷積的用處范圍最廣。因此本文首先介紹二維卷積,之后再介紹一維卷積與三維卷積的具體流程,並描述其各自的具體應用。 1. 二維卷積 圖中的輸入的數據維度為\(14\times 14\),過濾器大小為\(5\times 5\),二者 ...
卷積神經網絡(CNN)由輸入層、卷積層、激活函數、池化層、全連接層組成,即INPUT-CONV-RELU-POOL-FC (1)卷積層:用它來進行特征提取,如下: 輸入圖像是32*32*3,3是它的深度(即R、G、B),卷積層是一個5*5*3的filter(感受野),這里注意:感受野的深度 ...
卷積神經網絡中卷積層和池化層 https://www.cnblogs.com/wj-1314/p/9593364.html 為什么要使用卷積呢? 在傳統的神經網絡中,比如多層感知機(MLP),其輸入通常是一個特征向量,需要人工設計特征,然后將這些特征計算的值組成特征向量,在過去幾十年的經驗 ...
Mnist是針對小圖像塊處理的,這篇講的是針對大圖像進行處理的。兩者在這的區別還是很明顯的,小圖像(如8*8,MINIST的28*28)可以采用全連接的方式(即輸入層和隱含層直接相連)。但是大圖像,這個將會變得很耗時:比如96*96的圖像,若采用全連接方式,需要96*96個輸入單元,然后如果要訓練 ...
Shift 個人覺得BN層的作用是加快網絡學習速率,論文中提及其它的優點都是這個優點的副產品。 網上對BN解釋 ...