前面一節咱們已經介紹了決策樹的原理已經在sklearn中的應用。那么這里還有兩個數據處理和sklearn應用中的小知識點咱們還沒有講,但是在實踐中卻會經常要用到的,那就是交叉驗證cross_validation和Pipeline。cross_validation是保證了咱們的模型不受數據分布的影響 ...
變換器 Transformers 通常與分類器,回歸器或其他的學習器組合在一起以構建復合估計器。 完成這件事的最常用工具是Pipeline。 Pipeline 經常與 FeatureUnion 結合起來使用。 FeatureUnion 用於將變換器 transformers 的輸出串聯到復合特征空間 composite feature space 中。 TransformedTargetRegre ...
2021-06-20 13:30 0 182 推薦指數:
前面一節咱們已經介紹了決策樹的原理已經在sklearn中的應用。那么這里還有兩個數據處理和sklearn應用中的小知識點咱們還沒有講,但是在實踐中卻會經常要用到的,那就是交叉驗證cross_validation和Pipeline。cross_validation是保證了咱們的模型不受數據分布的影響 ...
另外一種將標稱型特征轉換為能夠被scikit-learn中模型使用的編碼是one-of-K, 又稱為 獨熱碼或dummy encoding。 這種編碼類型已經在類OneHotEncoder中實現。該類把每一個具有n_categories個可能取值的categorical特征變換為長度 ...
一、pipeline的用法 pipeline可以用於把多個estimators級聯成一個estimator,這么 做的原因是考慮了數據處理過程中一系列前后相繼的固定流程,比如feature selection->normalization->classification ...
計算交叉驗證的指標 使用交叉驗證最簡單的方法是在估計器和數據集上調用 cross_val_score 輔助函數。 下面的示例展示了如何通過分割數據,擬合模型和計算連續 5 次的分數(每次不同分割)來估計 linear kernel 支持向量機在 iris 數據集上的精度: 評分 ...
在機器學習中,通過增加一些輸入數據的非線性特征來增加模型的復雜度通常是有效的。一個簡單通用的辦法是使用多項式特征,這可以獲得特征的更高維度和互相間關系的項。這在 PolynomialFeatures 中實現: 注意,當使用多項 ...
。 在 scikit-learn 中, PCA 被實現為一個變換器對象, 通過 fit 方法可以擬合出 n 個 ...
二、機器學習模型評估 2.1 模型評估:基本概念 錯誤率(Error Rate) 預測錯誤的樣本數a占樣本總數的比例m \[E=\frac{a}{m} \] 准確率(Accuracy) 准確率=1-錯誤率准確率=1−錯誤率 誤差 ...