原文:強化學習入門之智能走迷宮-價值迭代算法

x 價值迭代算法基礎概念 x . 獎勵 若要實現價值迭代,首先要定義價值,在迷宮任務中,到達目標將獲得獎勵。 特定時間t給出獎勵Rt稱為即時獎勵 未來獲得的獎勵總和Gt被稱為總獎勵 Gt R t R t R t 考慮時間因素,需要引入折扣率,這樣可以在最后擬合時獲得時間最短的策略。 Gt R t yR t y R t .... x 動作價值與狀態價值 在迷宮中,當我們的智能體走到終點時設置獎勵R ...

2021-06-09 15:26 0 293 推薦指數:

查看詳情

強化學習入門智能迷宮-策略迭代算法

0x00 機器學習基礎 機器學習可分為三類 監督學習 無監督學習 強化學習 三種學習類別的關鍵點 監督學習需要人為設置參數,設置好標簽,然后將數據集分配到不同標簽。 無監督學習同樣需要設定參數,對無標簽的數據集進行分組。 強化學習需要人為設置初始參數 ...

Mon Jun 07 17:48:00 CST 2021 0 342
強化學習-價值迭代

1. 前言 在策略迭代最后我們發現策略迭代的收斂過程比較慢,那我們就會想有沒更好更快的迭代方法,今天我們介紹的價值迭代就是另一種尋找最優策略的解決方案。 2. 動態規划 價值迭代需要用到動態規划的思想,那我們簡單的回顧下動態規划的特點。 最優子結構:是指一個子問題的最優解是可以得到 ...

Sat Feb 16 17:12:00 CST 2019 0 1938
強化學習 - 機器人迷宮

強化學習 - 機器人迷宮 通過這篇文章,分享基於Udacity的機器人迷宮項目,使用強化學習實現; 問題描述 規則、需求如下: 智能機器人顯示在右上角,在迷宮中,有陷阱(紅色炸彈)及終點(藍色的目標點)兩種情景,機器人要盡量避開陷阱、盡快到達目的地; 機器人可執行的動作 ...

Sun Sep 29 05:44:00 CST 2019 0 829
強化學習-價值迭代代碼實現

1. 前言 上一篇博客我們介紹了價值迭代的原理。這一節我們實現強化學習里面的價值迭代的部分代碼(完整代碼GitHub)。 2. 價值迭代回顧 我們把注意點放在值函數上,等值函數收斂了,我們的策略也會收斂到最優值。 \[v^{T+1}(s) =max_{a} \sum_{s_{t+1 ...

Sun Feb 17 03:25:00 CST 2019 0 1190
智能強化學習入門Qmix

本文首發於:行者AI Qmix是多智能強化學習中比較經典的算法之一,在VDN的基礎上做了一些改進,與VDN相比,在各個agent之間有着較大差異的環境中,表現的更好。 1. IQL與VDN IQL(Independent Q_Learning),是一種比較暴力的解決問題的方法 ...

Sat May 22 00:42:00 CST 2021 0 5570
強化學習-策略迭代

1. 前言 在強化學習-MDP(馬爾可夫決策過程)算法原理中我們已經介紹了強化學習中的基石--MDP,本文的任務是介紹如何通過價值函數,去尋找到最優策略,使得最后得到的獎勵盡可能的多。 2. 回顧MDP 通過學習MDP我們得到了2個Bellman公式: 狀態值函數 ...

Fri Feb 15 06:49:00 CST 2019 0 3155
強化學習——入門

強化學習強化學習作為一門靈感來源於心理學中的行為主義理論的學科,其內容涉及 概率論、統計學、逼近論、凸分析、計算復雜性理論、運籌學 等多學科知識,難度之大,門檻之高,導致其發展速度特別緩慢。 一種解釋: 人的一生其實都是不斷在強化學習,當你有個動作(action)在某個狀態 ...

Thu Sep 12 19:37:00 CST 2019 1 467
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM