線性回歸——最小二乘 線性回歸(linear regression),就是用線性函數 f(x)=w⊤x+b">f(x)=w⊤x+bf(x)=w⊤x+b 去擬合一組數據 D={(x1,y1),(x2,y2),...,(xn,yn)}">D={(x1,y1),(x2,y2 ...
一 線性回歸 一 線性回歸 假設有數據有,其中,。其中m為訓練集樣本數,n為樣本維度,y是樣本的真實值。線性回歸采用一個多維的線性函數來盡可能的擬合所有的數據點,最簡單的想法就是最小化函數值與真實值誤差的平方 概率解釋 高斯分布加最大似然估計 。即有如下目標函數: 其中線性函數如下: 構建好線性回歸模型的目標函數之后,接下來就是求解目標函數的最優解,即一個優化問題。常用的梯度優化方法都可以拿來用, ...
2021-04-28 10:14 0 421 推薦指數:
線性回歸——最小二乘 線性回歸(linear regression),就是用線性函數 f(x)=w⊤x+b">f(x)=w⊤x+bf(x)=w⊤x+b 去擬合一組數據 D={(x1,y1),(x2,y2),...,(xn,yn)}">D={(x1,y1),(x2,y2 ...
就是修改線性回歸中的損失函數形式即可,嶺回歸以及Lasso回歸就是這么做的。 嶺回歸與Las ...
多元線性回歸模型中,如果所有特征一起上,容易造成過擬合使測試數據誤差方差過大;因此減少不必要的特征,簡化模型是減小方差的一個重要步驟。除了直接對特征篩選,來也可以進行特征壓縮,減少某些不重要的特征系數,系數壓縮趨近於0就可以認為舍棄該特征。 嶺回歸(Ridge Regression)和Lasso ...
前言 從這一篇文章開始,就正式進入「美團」算法工程師帶你入門機器學習系列的正文了,之前的幾篇算是導讀和預熱,想必大家看的並不過癮。從這里開始,我們將會以線性回歸為起點,貫通回歸方法在機器學習算法中所扮演的角色、具有的功能和使用的方法。 說起回歸,它是我們在高中時就接觸過的內容。具體的,回歸 ...
目錄 線性回歸——最小二乘 Lasso回歸和嶺回歸 為什么 lasso 更容易使部分權重變為 0 而 ridge 不行? References 線性回歸很簡單,用線性函數擬合數據,用 mean square error (mse) 計算損失(cost ...
一 線性回歸(Linear Regression ) 1. 線性回歸概述 回歸的目的是預測數值型數據的目標值,最直接的方法就是根據輸入寫出一個求出目標值的計算公式,也就是所謂的回歸方程,例如y = ax1+bx2,其中求回歸系數的過程就是回歸。那么回歸是如何預測的呢?當有了這些回歸 ...
線性回歸模型的短板 嶺回歸模型 λ值的確定--交叉驗證法 嶺回歸模型應⽤ 尋找最佳的Lambda值 基於最佳的Lambda值建模 Lasso回歸模型 LASSO回歸模型的交叉驗證 Lasso回歸模型應用 ...
由於計算一般線性回歸的時候,其計算方法是: p = (X’* X)**(-1) * X’ * y 很多時候 矩陣(X’* X)是不可逆的,所以回歸系數p也就無法求解, 需要轉換思路和方法求解:加2范數的最小二乘擬合(嶺回歸) 嶺回歸模型的系數表達式: p = (X’ * X ...