原文:深度學習入門--訓練集、測試集和驗證集

訓練集 用於模型擬合的數據樣本,用來調試神經網絡中的參數。 測試集 用來評估模最終模型的泛化能力。但不能作為調參 選擇特征等算法相關的選擇的依據。測試集的作用是體現在測試的過程。 驗證集 用於查看訓練效果,查看模型訓練的效果是否朝着壞的方向進行。驗證集的作用是體現在訓練的過程。舉個栗子:通過查看訓練集和驗證集的損失值隨着epoch的變化關系可以看出模型是否過擬合,如果是可以及時停止訓練,然后根據情 ...

2021-04-02 21:57 0 496 推薦指數:

查看詳情

機器學習中的訓練驗證測試

訓練 (Training set)   用來訓練分類器中的參數,擬合模型。會使用超參數的不同取值,擬合出多個分類器,后續再結合驗證調整模型的超參數。 驗證 (Validation set)   當通過訓練訓練出多個模型后,為了能找出效果最佳的模型,使用各個模型對驗證集數據進行預測 ...

Sat Aug 01 00:34:00 CST 2020 0 867
機器學習訓練_驗證_測試

  在NG的ML課程中和西瓜書中都有提到:最佳的數據分類情況是把數據分為三部分,分別為:訓練(train set),驗證(validation set)和測試(test set)。那么,驗證測試有什么區別呢?   實際上,兩者的主要區別是:驗證用於進一步確定模型的參數(或結構 ...

Wed Jun 28 00:28:00 CST 2017 0 2055
機器學習中的訓練驗證測試

在有監督(supervise)的機器學習中,數據一般被分成2~3個,即:訓練(train set) 、驗證(validation set) 測試(test set)。 三個集合的定義為: Training set:A set of examples used for learning ...

Sun Jan 28 01:10:00 CST 2018 0 3557
關於訓練,驗證,測試的划分

首先需要說明的是:訓練(training set)、驗證(validation set)和測試(test set)本質上並無區別,都是把一個數據分成三個部分而已,都是(feature, label)造型。尤其是訓練驗證,更無本質區別。測試可能會有一些區別,比如在一些權威計算機視覺 ...

Thu Jul 19 01:39:00 CST 2018 0 11208
驗證測試訓練

這三個名詞在機器學習領域的文章中極其常見,但很多人對他們的概念並不是特別清楚,尤其是后兩個經常被人混用。 Ripley, B.D(1996)在他的經典專著Pattern Recognition and Neural Networks中給出 ...

Mon Jul 29 01:21:00 CST 2013 0 5271
訓練驗證測試比例

當數據量比較小時,可以使用 7 :3 訓練數據和測試數據,或者 6:2 : 2 訓練數據,驗證數據和測試數據。 (西瓜書中描述常見的做法是將大約 2/3 ~ 4/5 的樣本數據用於訓練,剩余樣本用於測試) 當數據量非常大時,可以使用 98 : 1 : 1 訓練數據,驗證數據和測試 ...

Mon Jul 01 19:23:00 CST 2019 0 6078
訓練驗證測試區別

我們在進行模型評估和選擇的時候,先將數據隨機分為訓練驗證測試,然后用訓練訓練模型,用驗證驗證模型,根據情況不斷調整模型,選擇其中最好的模型,再用訓練測試訓練模型得到一個最好的模型,最后用測試評估最終的模型。 訓練 訓練是用於模型擬合數據樣本。 驗證 ...

Thu Mar 03 04:33:00 CST 2022 0 1643
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM