主要介紹下完成了模型訓練、評估之后的部署環節。 前言:之前輿情情感分析那一篇文章已經講了如何使用ernie以及paddlehub來進行模型的訓練和優化以及評估環節,所以接下來會講下如何進行部署,進行實際的運用環節。在這里,用的是上次講的輿情情感分析的模型。 將Fine-tune好 ...
溫故而知新,參考mentor睿昊學長 xhplus 和主管鋒偉 forwil 的專欄,記錄在商湯實習內容的總結和反思。希望商湯工具人組越來越nb 什么是模型部署 經過大量的圖片進行訓練后,一個具有上億個參數的深度學習模型在測試集上達到的預定的精度,這時候老板們一定催着把這個模型上線 搭載到產品中 進行 驗證 售賣。模型部署就是完成深度學習算法產品化的最后一步。一個完美的模型部署工具 引擎,理應完成 ...
2021-04-01 01:01 0 670 推薦指數:
主要介紹下完成了模型訓練、評估之后的部署環節。 前言:之前輿情情感分析那一篇文章已經講了如何使用ernie以及paddlehub來進行模型的訓練和優化以及評估環節,所以接下來會講下如何進行部署,進行實際的運用環節。在這里,用的是上次講的輿情情感分析的模型。 將Fine-tune好 ...
作為著名Python web框架之一的Flask,具有簡單輕量、靈活、擴展豐富且上手難度低的特點,因此成為了機器學習和深度學習模型上線跑定時任務,提供API的首選框架。 眾所周知,Flask默認不支持非阻塞IO的,當請求A還未完成時候,請求B需要等待請求A完成后才能被處理,所以效率非常低 ...
一般地,當我們在python框架(eg:pytorch,tensorflow等)中訓練好模型,需要部署到C/C++環境,有以下方案: CPU方案:Libtorch、OpenCV-DNN、OpenVINO、ONNX(有個runtime可以調) GPU方案:TensorRT ...
lenet Lenet 是最早的卷積神經網絡之一,並且推動了深度學習領域的發展,最初是為手寫數字識別建立的網絡。 LeNet分為卷積層塊和全連接層塊兩個部分。 卷積層塊里的基本單位是卷積層后接最大池化層,卷積層用來識別圖像里的空間模式,如線條。 最大池化層則用來降低卷積層對位 ...
由於模型訓練完之后需要上線部署,這個過程中需要將模型集成到當前的軟件架構中,因此要根據軟件架構考慮模型的實際部署方法。目前來看主流的部署方法有以下幾種方案: 1.python服務接口 在python服務器上部署模型文件,給出一個http服務,后台通過這個服務就可以調用模型進行 ...
前言 深度學習不不僅僅是理論創新,更重要的是應用於工程實際。 關於深度學習人工智能落地,已經有有很多的解決方案,不論是電腦端、手機端還是嵌入式端,將已經訓練好的神經網絡權重在各個平台跑起來,應用起來才是最實在的。 (caffe2-ios:https://github.com ...
1. Keras 轉 tflite def keras2tflite(keras_model, tflitefile) converter = tf.lite.TFLiteConverter ...
大部分內容參考自《Machine Learning Yearning》 Bias 和 Variance 偏差(bias)是指算法在訓練集上的偏差,也就是錯誤率,錯誤越大偏差越大,欠擬合 ...