原文:CNN結構演變總結(二)輕量化模型

CNN結構演變總結 一 經典模型 導言: 上一篇介紹了經典模型中的結構演變,介紹了設計原理,作用,效果等。在本文,將對輕量化模型進行總結分析。 輕量化模型主要圍繞減少計算量,減少參數,降低實際運行時間,簡化底層實現方式等這幾個方面,提出了深度可分離卷積,分組卷積,可調超參數降低空間分辨率和減少通道數,新的激活函數等方法,並針對一些現有的結構的實際運行時間作了分析,提出了一些結構設計原則,並根據這些 ...

2021-03-05 18:18 0 568 推薦指數:

查看詳情

CNN結構演變總結(一)經典模型

導言: 自2012年AlexNet在ImageNet比賽上獲得冠軍,卷積神經網絡逐漸取代傳統算法成為了處理計算機視覺任務的核心。 在這幾年,研究人員從提升特征提取能力,改進回傳梯度更新效果,縮短訓練時間,可視化內部結構,減少網絡參數量,模型輕量化, 自動設計網絡結構等這些方面,對卷積 ...

Sat Feb 27 20:33:00 CST 2021 0 514
模型輕量化

1. 輕量化網絡 參考: https://zhuanlan.zhihu.com/p/35405071 Mobilenet v1核心是把卷積拆分為Depthwise+Pointwise兩部分。 圖5 為了解釋Mobilenet,假設有 的輸入,同時有 個 的卷積。如果設置 ...

Sat Nov 30 00:45:00 CST 2019 0 302
輕量化模型設計

十歲的小男孩   本文為終端移植的一個小章節。 目錄   引言   論文     A. MobileNets     B. ShuffleNet     C. Squeezenet     D. Xception     E. ResNeXt 引言   在保證模型性能 ...

Fri Nov 09 01:57:00 CST 2018 0 969
CNN結構演變總結(三)設計原則

CNN結構演變總結(一)經典模型 CNN結構演變總結(二)輕量化模型 前言: 前兩篇對一些經典模型輕量化模型關於結構設計方面的一些創新進行了總結,在本文將對前面的一些結構設計的原則,作用進行總結。 本文將介紹兩種提升模型的表示能力的結構或方式,模型的五條設計原則,輕量化模型的四個 ...

Wed Mar 10 08:42:00 CST 2021 0 300
深度學習模型輕量化(上)

深度學習模型輕量化(上) 移動端模型必須滿足模型尺寸小、計算復雜度低、電池耗電量低、下發更新部署靈活等條件。 模型壓縮和加速是兩個不同的話題,有時候壓縮並不一定能帶來加速的效果,有時候又是相輔相成的。壓縮重點在於減少網絡參數量,加速則側重在降低計算復雜度、提升並行能力等。模型壓縮和加 ...

Sat May 16 14:47:00 CST 2020 0 2823
輕量化模型之MobileNet系列

自 2012 年 AlexNet 以來,卷積神經網絡在圖像分類、目標檢測、語義分割等領域獲得廣泛應用。隨着性能要求越來越高,AlexNet 已經無法滿足大家的需求,於是乎各路大牛紛紛提出性能更優越的 CNN 網絡,如 VGG、GoogLeNet、ResNet、DenseNet ...

Fri Dec 13 00:43:00 CST 2019 0 318
深度學習模型輕量化(下)

深度學習模型輕量化(下) 2.4 蒸餾 2.4.1 蒸餾流程 蒸餾本質是student對teacher的擬合,從teacher中汲取養分,學到知識,不僅僅可以用到模型壓縮和加速中。蒸餾常見流程如下圖所示 1. 老師和學生可以是不同的網絡結構,比如BERT蒸餾到BiLSTM網絡 ...

Sat May 16 14:52:00 CST 2020 0 1196
四大輕量化模型對比(轉)

原文地址:https://blog.csdn.net/Uwr44UOuQcNsUQb60zk2/article/details/79019191 本文就近年提出的四個輕量化模型進行學習和對比,四個模型分別是:SqueezeNet、MobileNet、ShuffleNet ...

Thu May 24 22:13:00 CST 2018 1 4311
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM