原文:L1,L2正則化與損失

L 和L 是指范數,分別為 范數和 范數。 損失 L 損失 MAE Mean absolute error 損失就是L 損失,目標值 boldsymbol y ,目標函數 f cdot ,輸入值 boldsymbol x ,則: begin aligned L amp f boldsymbol x boldsymbol y amp sum limits i f x i y i end aligne ...

2021-01-13 21:54 0 475 推薦指數:

查看詳情

L1L2損失函數和正則化

作為損失函數 L1范數損失函數   L1范數損失函數,也被稱之為平均絕對值誤差(MAE)。總的來說,它把目標值$Y_i$與估計值$f(x_i)$的絕對差值的總和最小。 $$S=\frac{1}{N}\sum_{i=1}^n|Y_i-f(x_i)|$$ L2范數損失函數 ...

Wed Jan 29 23:16:00 CST 2020 0 744
L1正則化L2正則化

  L1L2正則都是比較常見和常用的正則化項,都可以達到防止過擬合的效果。L1正則化的解具有稀疏性,可用於特征選擇。L2正則化的解都比較小,抗擾動能力強。 L2正則化   對模型參數的L2正則項為      即權重向量中各個元素的平方和,通常取1/2。L2正則也經常被稱作“權重衰減 ...

Fri Sep 29 01:58:00 CST 2017 0 9067
L0、L1L2范數正則化

一、范數的概念 向量范數是定義了向量的類似於長度的性質,滿足正定,齊次,三角不等式的關系就稱作范數。 一般分為L0、L1L2L_infinity范數。 二、范數正則化背景 1. 監督機器學習問題無非就是“minimizeyour error while ...

Thu Oct 31 23:47:00 CST 2019 0 440
正則化L1L2正則

稀疏性表示數據中心0占比比較大 引西瓜書中P252原文: 對於損失函數后面加入懲罰函數可以降低過擬合的風險,懲罰函數使用L2范數,則稱為嶺回歸,L2范數相當與給w加入先驗,需要要求w滿足某一分布,L2范數表示數據服從高斯分布,而L1范數表示數據服從拉普拉斯分布。從拉普拉斯函數和高斯 ...

Thu Sep 05 19:44:00 CST 2019 0 446
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM